fix evse_link

This commit is contained in:
2026-01-24 16:56:51 +00:00
parent 023644a887
commit 286028b6a8
54 changed files with 4456 additions and 2632 deletions

View File

@@ -3,13 +3,14 @@
set(srcs
driver/meter_ade7758/meter_ade7758.c
driver/meter_ade7758/ade7758.c
driver/meter_orno/meter_orno513.c
driver/meter_orno/meter_orno526.c
driver/meter_orno/meter_orno516.c
driver/meter_orno/meter_dts6619.c
driver/meter_orno/meter_dds661.c
driver/meter_orno/meter_ea777.c
driver/meter_orno/modbus_params.c
driver/meter_modbus/meter_orno513.c
driver/meter_modbus/meter_orno526.c
driver/meter_modbus/meter_orno516.c
driver/meter_modbus/meter_dts6619.c
driver/meter_modbus/meter_dds661.c
driver/meter_modbus/meter_ea777.c
driver/meter_modbus/meter_dts024m.c
driver/meter_modbus/modbus_params.c
driver/meter_zigbee/meter_zigbee.c
src/meter_manager.c
src/meter_events.c
@@ -18,7 +19,7 @@ set(srcs
set(includes
include
driver/meter_ade7758
driver/meter_orno
driver/meter_modbus
driver/meter_zigbee
)

View File

@@ -0,0 +1,542 @@
// meter_dts024m.c — Driver Modbus RTU para DTS024M (ESP-IDF / esp-modbus)
// Versão PRODUÇÃO (SEM AUTO-PROBE): parâmetros fixos (baud/parity/id/FC/base).
// Ajusta os #defines DTS024M_PROD_* conforme o teu medidor.
#include "meter_events.h"
#include "modbus_params.h"
#include "mbcontroller.h"
#include "esp_log.h"
#include "esp_err.h"
#include "driver/uart.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include <stddef.h>
#include <string.h>
#include "meter_dts024m.h"
#define TAG "serial_mdb_dts024m"
// ===== UART / RS-485 =====
#define MB_PORT_NUM 2
// Ajuste os pinos conforme seu hardware
#define MB_UART_TXD 17
#define MB_UART_RXD 16
#define MB_UART_RTS 2 // pino DE/RE do transceiver RS-485
// ===== Timings =====
#define UPDATE_INTERVAL (5000 / portTICK_PERIOD_MS)
#define POLL_INTERVAL (200 / portTICK_PERIOD_MS)
// ===== Helpers =====
#define STR(fieldname) ((const char *)(fieldname))
#define OPTS(min_val, max_val, step_val) {.opt1 = (min_val), .opt2 = (max_val), .opt3 = (step_val)}
#define ARRAY_SIZE(a) (sizeof(a) / sizeof((a)[0]))
// ===== Config PRODUÇÃO (sem AUTO-PROBE) =====
// Ajusta estes valores:
#define DTS024M_PROD_BAUD 2400
#define DTS024M_PROD_PARITY UART_PARITY_DISABLE // 0 = none; UART_PARITY_EVEN se 8E1
#define DTS024M_PROD_SLAVE_ID 1 // endereço Modbus (1..247)
#define DTS024M_PROD_AREA MB_PARAM_INPUT // MB_PARAM_INPUT (FC04) ou MB_PARAM_HOLDING (FC03)
#define DTS024M_PROD_BASE_OFFSET 0 // 0 ou 1 (depende se o mapa é 0-based ou 1-based)
// ===== Estado =====
static bool is_initialized = false;
static bool mb_started = false;
static TaskHandle_t meter_task = NULL;
// ============================================================================
// MAPA DE REGISTROS (template) — pode variar conforme firmware.
// Estes endereços são um “perfil” comum.
// ============================================================================
#define DTS024M_L1_VOLTAGE 0x0000 // U32, 0.01 V (2 regs)
#define DTS024M_L2_VOLTAGE 0x0002
#define DTS024M_L3_VOLTAGE 0x0004
#define DTS024M_L1_CURRENT 0x0006 // U32, 0.001 A (2 regs)
#define DTS024M_L2_CURRENT 0x0008
#define DTS024M_L3_CURRENT 0x000A
#define DTS024M_L1_ACTIVE_P 0x000C // I32 (twos complement), (depende do modelo/escala)
#define DTS024M_L2_ACTIVE_P 0x000E
#define DTS024M_L3_ACTIVE_P 0x0010
#define DTS024M_PF_L1 0x001E // I16 (twos complement), 0.001
#define DTS024M_PF_L2 0x001F
#define DTS024M_PF_L3 0x0020
#define DTS024M_FREQUENCY 0x002A // U16, 0.01 Hz
#define DTS024M_TOTAL_ACTIVE_E 0x0404 // U32, 0.01 kWh (2 regs)
// ============================================================================
// Conversões signed (twos complement) — porque o projeto não tem PARAM_TYPE_I*
// ============================================================================
static inline int32_t s32_from_u32(uint32_t x)
{
return (x & 0x80000000u) ? (int32_t)(x - 0x100000000ULL) : (int32_t)x;
}
static inline int16_t s16_from_u16(uint16_t x)
{
return (x & 0x8000u) ? (int16_t)(x - 0x10000u) : (int16_t)x;
}
// ============================================================================
// CIDs
// ============================================================================
enum
{
CID_DTS024M_L1_VOLTAGE = 0,
CID_DTS024M_L2_VOLTAGE,
CID_DTS024M_L3_VOLTAGE,
CID_DTS024M_L1_CURRENT,
CID_DTS024M_L2_CURRENT,
CID_DTS024M_L3_CURRENT,
CID_DTS024M_L1_ACTIVE_P,
CID_DTS024M_L2_ACTIVE_P,
CID_DTS024M_L3_ACTIVE_P,
CID_DTS024M_PF_L1,
CID_DTS024M_PF_L2,
CID_DTS024M_PF_L3,
CID_DTS024M_FREQUENCY,
CID_DTS024M_TOTAL_ACTIVE_E,
};
// ============================================================================
// DESCRIPTORS (TEMPLATE) — copiamos para RAM e ajustamos:
// - slave_id
// - base offset (0/1)
// - mb_param_type (HOLDING/INPUT)
// ============================================================================
static const mb_parameter_descriptor_t device_parameters_dts024m_tmpl[] = {
// Tensões (U32 / 2 regs) — 0.01 V
{CID_DTS024M_L1_VOLTAGE, STR("L1 Voltage"), STR("V"), 1,
MB_PARAM_HOLDING, DTS024M_L1_VOLTAGE, 2,
0, PARAM_TYPE_U32, 4, OPTS(0, 0xFFFFFFFF, 1), PAR_PERMS_READ},
{CID_DTS024M_L2_VOLTAGE, STR("L2 Voltage"), STR("V"), 1,
MB_PARAM_HOLDING, DTS024M_L2_VOLTAGE, 2,
0, PARAM_TYPE_U32, 4, OPTS(0, 0xFFFFFFFF, 1), PAR_PERMS_READ},
{CID_DTS024M_L3_VOLTAGE, STR("L3 Voltage"), STR("V"), 1,
MB_PARAM_HOLDING, DTS024M_L3_VOLTAGE, 2,
0, PARAM_TYPE_U32, 4, OPTS(0, 0xFFFFFFFF, 1), PAR_PERMS_READ},
// Correntes (U32 / 2 regs) — 0.001 A
{CID_DTS024M_L1_CURRENT, STR("L1 Current"), STR("A"), 1,
MB_PARAM_HOLDING, DTS024M_L1_CURRENT, 2,
0, PARAM_TYPE_U32, 4, OPTS(0, 0xFFFFFFFF, 1), PAR_PERMS_READ},
{CID_DTS024M_L2_CURRENT, STR("L2 Current"), STR("A"), 1,
MB_PARAM_HOLDING, DTS024M_L2_CURRENT, 2,
0, PARAM_TYPE_U32, 4, OPTS(0, 0xFFFFFFFF, 1), PAR_PERMS_READ},
{CID_DTS024M_L3_CURRENT, STR("L3 Current"), STR("A"), 1,
MB_PARAM_HOLDING, DTS024M_L3_CURRENT, 2,
0, PARAM_TYPE_U32, 4, OPTS(0, 0xFFFFFFFF, 1), PAR_PERMS_READ},
// Potência ativa por fase (U32 / 2 regs no descriptor; interpretamos como signed I32)
{CID_DTS024M_L1_ACTIVE_P, STR("L1 Active Power"), STR("W"), 1,
MB_PARAM_HOLDING, DTS024M_L1_ACTIVE_P, 2,
0, PARAM_TYPE_U32, 4, OPTS(0, 0xFFFFFFFF, 1), PAR_PERMS_READ},
{CID_DTS024M_L2_ACTIVE_P, STR("L2 Active Power"), STR("W"), 1,
MB_PARAM_HOLDING, DTS024M_L2_ACTIVE_P, 2,
0, PARAM_TYPE_U32, 4, OPTS(0, 0xFFFFFFFF, 1), PAR_PERMS_READ},
{CID_DTS024M_L3_ACTIVE_P, STR("L3 Active Power"), STR("W"), 1,
MB_PARAM_HOLDING, DTS024M_L3_ACTIVE_P, 2,
0, PARAM_TYPE_U32, 4, OPTS(0, 0xFFFFFFFF, 1), PAR_PERMS_READ},
// PF (U16 / 1 reg; interpretamos como signed I16) — 0.001
{CID_DTS024M_PF_L1, STR("L1 PF"), STR(""), 1,
MB_PARAM_HOLDING, DTS024M_PF_L1, 1,
0, PARAM_TYPE_U16, 2, OPTS(0, 65535, 1), PAR_PERMS_READ},
{CID_DTS024M_PF_L2, STR("L2 PF"), STR(""), 1,
MB_PARAM_HOLDING, DTS024M_PF_L2, 1,
0, PARAM_TYPE_U16, 2, OPTS(0, 65535, 1), PAR_PERMS_READ},
{CID_DTS024M_PF_L3, STR("L3 PF"), STR(""), 1,
MB_PARAM_HOLDING, DTS024M_PF_L3, 1,
0, PARAM_TYPE_U16, 2, OPTS(0, 65535, 1), PAR_PERMS_READ},
// Frequência (U16 / 1 reg) — 0.01 Hz
{CID_DTS024M_FREQUENCY, STR("Frequency"), STR("Hz"), 1,
MB_PARAM_HOLDING, DTS024M_FREQUENCY, 1,
0, PARAM_TYPE_U16, 2, OPTS(0, 10000, 1), PAR_PERMS_READ},
// Energia ativa total (U32 / 2 regs) — 0.01 kWh
{CID_DTS024M_TOTAL_ACTIVE_E, STR("Total Active Energy"), STR("kWh"), 1,
MB_PARAM_HOLDING, DTS024M_TOTAL_ACTIVE_E, 2,
0, PARAM_TYPE_U32, 4, OPTS(0, 0xFFFFFFFF, 1), PAR_PERMS_READ},
};
static mb_parameter_descriptor_t device_parameters_dts024m[ARRAY_SIZE(device_parameters_dts024m_tmpl)];
static const uint16_t num_device_parameters_dts024m = ARRAY_SIZE(device_parameters_dts024m);
static void dts024m_build_descriptors(uint8_t slave_id, uint16_t base_offset, mb_param_type_t area)
{
memcpy(device_parameters_dts024m,
device_parameters_dts024m_tmpl,
sizeof(device_parameters_dts024m));
for (uint16_t i = 0; i < num_device_parameters_dts024m; ++i)
{
device_parameters_dts024m[i].mb_slave_addr = slave_id;
device_parameters_dts024m[i].mb_reg_start =
(uint16_t)(device_parameters_dts024m[i].mb_reg_start + base_offset);
device_parameters_dts024m[i].mb_param_type = area; // HOLDING (FC03) ou INPUT (FC04)
}
}
// ============================================================================
// Modbus master init (fixo) — garante ordem correta (start -> uart_set_mode)
// ============================================================================
static esp_err_t dts024m_master_reinit(uint32_t baud, uart_parity_t parity)
{
if (mb_started)
{
(void)mbc_master_destroy();
mb_started = false;
}
if (uart_is_driver_installed(MB_PORT_NUM))
{
uart_driver_delete(MB_PORT_NUM);
}
mb_communication_info_t comm = {
.port = MB_PORT_NUM,
.mode = MB_MODE_RTU,
.baudrate = baud,
.parity = parity};
void *handler = NULL;
esp_err_t err = mbc_master_init(MB_PORT_SERIAL_MASTER, &handler);
if (err != ESP_OK)
return err;
err = mbc_master_setup(&comm);
if (err != ESP_OK)
{
(void)mbc_master_destroy();
return err;
}
err = uart_set_pin(MB_PORT_NUM, MB_UART_TXD, MB_UART_RXD, MB_UART_RTS, UART_PIN_NO_CHANGE);
if (err != ESP_OK)
{
(void)mbc_master_destroy();
return err;
}
// IMPORTANTE: start antes de uart_set_mode (driver UART costuma ser instalado no start)
err = mbc_master_start();
if (err != ESP_OK)
{
(void)mbc_master_destroy();
return err;
}
mb_started = true;
err = uart_set_mode(MB_PORT_NUM, UART_MODE_RS485_HALF_DUPLEX);
if (err != ESP_OK)
{
(void)mbc_master_destroy();
mb_started = false;
return err;
}
vTaskDelay(pdMS_TO_TICKS(40));
return ESP_OK;
}
// ============================================================================
// Post do evento de medição
// ============================================================================
static void meter_dts024m_post_event(float *voltage, float *current, int *power_w,
float freq_hz, float pf_avg, float total_kwh)
{
meter_event_data_t evt = {
.source = "GRID",
.frequency = freq_hz,
.power_factor = pf_avg,
.total_energy = total_kwh};
memcpy(evt.vrms, voltage, sizeof(evt.vrms));
memcpy(evt.irms, current, sizeof(evt.irms));
memcpy(evt.watt, power_w, sizeof(evt.watt));
esp_err_t err = esp_event_post(METER_EVENT, METER_EVENT_DATA_READY,
&evt, sizeof(evt), portMAX_DELAY);
if (err != ESP_OK)
{
ESP_LOGW(TAG, "Falha ao emitir evento: %s", esp_err_to_name(err));
}
}
// ============================================================================
// Task de polling
// ============================================================================
static void serial_mdb_dts024m_task(void *param)
{
(void)param;
esp_err_t err;
const mb_parameter_descriptor_t *desc = NULL;
float v[3] = {0};
float i[3] = {0};
float pf[3] = {0};
float freq = 0.0f;
float total_kwh = 0.0f;
int p_w[3] = {0};
vTaskDelay(pdMS_TO_TICKS(200)); // settle
while (1)
{
for (uint16_t cid = 0; cid < num_device_parameters_dts024m; cid++)
{
err = mbc_master_get_cid_info(cid, &desc);
if (err != ESP_OK || !desc)
{
continue;
}
uint8_t type = 0;
uint16_t raw_u16 = 0;
uint32_t raw_u32 = 0;
void *value_ptr = &raw_u16;
// U32
switch (cid)
{
case CID_DTS024M_L1_VOLTAGE:
case CID_DTS024M_L2_VOLTAGE:
case CID_DTS024M_L3_VOLTAGE:
case CID_DTS024M_L1_CURRENT:
case CID_DTS024M_L2_CURRENT:
case CID_DTS024M_L3_CURRENT:
case CID_DTS024M_L1_ACTIVE_P:
case CID_DTS024M_L2_ACTIVE_P:
case CID_DTS024M_L3_ACTIVE_P:
case CID_DTS024M_TOTAL_ACTIVE_E:
value_ptr = &raw_u32;
break;
default:
value_ptr = &raw_u16;
break;
}
// 1 retry simples em caso de timeout (podes remover se quiseres menos carga)
err = mbc_master_get_parameter(cid,
(char *)desc->param_key,
(uint8_t *)value_ptr,
&type);
if (err == ESP_ERR_TIMEOUT)
{
vTaskDelay(pdMS_TO_TICKS(60));
err = mbc_master_get_parameter(cid,
(char *)desc->param_key,
(uint8_t *)value_ptr,
&type);
}
if (err == ESP_OK)
{
switch (cid)
{
// V (0.01V)
case CID_DTS024M_L1_VOLTAGE:
v[0] = ((float)raw_u32) * 0.01f;
break;
case CID_DTS024M_L2_VOLTAGE:
v[1] = ((float)raw_u32) * 0.01f;
break;
case CID_DTS024M_L3_VOLTAGE:
v[2] = ((float)raw_u32) * 0.01f;
break;
// I (0.001A)
case CID_DTS024M_L1_CURRENT:
i[0] = ((float)raw_u32) * 0.001f;
break;
case CID_DTS024M_L2_CURRENT:
i[1] = ((float)raw_u32) * 0.001f;
break;
case CID_DTS024M_L3_CURRENT:
i[2] = ((float)raw_u32) * 0.001f;
break;
// P ativa (twos complement I32) — atenção: escala depende do modelo
case CID_DTS024M_L1_ACTIVE_P:
p_w[0] = (int)s32_from_u32(raw_u32);
break;
case CID_DTS024M_L2_ACTIVE_P:
p_w[1] = (int)s32_from_u32(raw_u32);
break;
case CID_DTS024M_L3_ACTIVE_P:
p_w[2] = (int)s32_from_u32(raw_u32);
break;
// PF (twos complement I16; 0.001)
case CID_DTS024M_PF_L1:
pf[0] = ((float)s16_from_u16(raw_u16)) * 0.001f;
break;
case CID_DTS024M_PF_L2:
pf[1] = ((float)s16_from_u16(raw_u16)) * 0.001f;
break;
case CID_DTS024M_PF_L3:
pf[2] = ((float)s16_from_u16(raw_u16)) * 0.001f;
break;
// Freq (0.01Hz)
case CID_DTS024M_FREQUENCY:
freq = ((float)raw_u16) * 0.01f;
break;
// Energia (0.01kWh)
case CID_DTS024M_TOTAL_ACTIVE_E:
total_kwh = ((float)raw_u32) * 0.01f;
break;
default:
break;
}
ESP_LOGD(TAG, "%s (cid=%u) ok (u16=%u u32=%u)",
desc->param_key, cid, (unsigned)raw_u16, (unsigned)raw_u32);
}
else
{
ESP_LOGE(TAG, "CID %u (%s) read failed: %s",
cid, desc->param_key, esp_err_to_name(err));
}
vTaskDelay(POLL_INTERVAL);
}
// PF médio simples (ignora zeros)
float pf_sum = 0.0f;
int pf_cnt = 0;
for (int k = 0; k < 3; ++k)
{
if (pf[k] != 0.0f)
{
pf_sum += pf[k];
pf_cnt++;
}
}
float pf_avg = (pf_cnt ? pf_sum / pf_cnt : 0.0f);
meter_dts024m_post_event(v, i, p_w, freq, pf_avg, total_kwh);
vTaskDelay(UPDATE_INTERVAL);
}
}
// ============================================================================
// Init / Start / Stop
// ============================================================================
esp_err_t meter_dts024m_init(void)
{
if (is_initialized)
{
ESP_LOGW(TAG, "Already initialized");
return ESP_ERR_INVALID_STATE;
}
// init fixo (produção)
esp_err_t err = dts024m_master_reinit(DTS024M_PROD_BAUD, DTS024M_PROD_PARITY);
if (err != ESP_OK)
{
ESP_LOGE(TAG, "master_reinit failed: %s", esp_err_to_name(err));
return err;
}
// monta descriptors reais com ID/offset/area fixos
dts024m_build_descriptors(DTS024M_PROD_SLAVE_ID, DTS024M_PROD_BASE_OFFSET, DTS024M_PROD_AREA);
// aplica descriptors reais
esp_err_t derr = mbc_master_set_descriptor(device_parameters_dts024m,
num_device_parameters_dts024m);
if (derr != ESP_OK)
{
ESP_LOGE(TAG, "set_descriptor failed: %s", esp_err_to_name(derr));
return derr;
}
is_initialized = true;
ESP_LOGI(TAG, "DTS024M initialized (PROD) baud=%d parity=%d id=%d area=%s base=%d",
DTS024M_PROD_BAUD,
(int)DTS024M_PROD_PARITY,
DTS024M_PROD_SLAVE_ID,
(DTS024M_PROD_AREA == MB_PARAM_HOLDING ? "FC03" : "FC04"),
DTS024M_PROD_BASE_OFFSET);
return ESP_OK;
}
esp_err_t meter_dts024m_start(void)
{
if (!is_initialized)
{
ESP_LOGE(TAG, "Not initialized");
return ESP_ERR_INVALID_STATE;
}
if (meter_task == NULL)
{
xTaskCreate(serial_mdb_dts024m_task,
"meter_dts024m_task",
4096, NULL, 3, &meter_task);
ESP_LOGI(TAG, "DTS024M task started");
}
return ESP_OK;
}
void meter_dts024m_stop(void)
{
if (!is_initialized)
{
ESP_LOGW(TAG, "Not initialized, skipping stop");
return;
}
if (meter_task)
{
vTaskDelete(meter_task);
meter_task = NULL;
ESP_LOGI(TAG, "DTS024M task stopped");
}
if (mb_started)
{
(void)mbc_master_destroy();
mb_started = false;
}
if (uart_is_driver_installed(MB_PORT_NUM))
{
uart_driver_delete(MB_PORT_NUM);
ESP_LOGI(TAG, "UART driver deleted");
}
is_initialized = false;
ESP_LOGI(TAG, "Meter DTS024M cleaned up");
}

View File

@@ -0,0 +1,35 @@
#ifndef METER_DTS024M_H_
#define METER_DTS024M_H_
#include <stdint.h>
#include <stdbool.h>
#include "esp_err.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* @brief Inicializa o driver do medidor DTS024M (UART RS485, Modbus, registradores).
*
* @return esp_err_t Retorna ESP_OK se a inicialização for bem-sucedida, caso contrário retorna um erro.
*/
esp_err_t meter_dts024m_init(void);
/**
* @brief Inicia a tarefa de leitura de dados do medidor DTS024M.
*
* @return esp_err_t Retorna ESP_OK se a tarefa for iniciada com sucesso, caso contrário retorna um erro.
*/
esp_err_t meter_dts024m_start(void);
/**
* @brief Para a tarefa de leitura e limpa os dados internos do medidor DTS024M.
*/
void meter_dts024m_stop(void);
#ifdef __cplusplus
}
#endif
#endif /* METER_DTS024M_H_ */

View File

@@ -7,14 +7,14 @@
/**
* @brief Inicializa o driver do medidor dts6619 (SPI, mutex, registradores).
*
*
* @return esp_err_t Retorna ESP_OK se a inicialização for bem-sucedida, caso contrário retorna um erro.
*/
esp_err_t meter_dts6619_init(void);
/**
* @brief Inicia a tarefa de leitura de dados do medidor DTS6619.
*
*
* @return esp_err_t Retorna ESP_OK se a tarefa for iniciada com sucesso, caso contrário retorna um erro.
*/
esp_err_t meter_dts6619_start(void);
@@ -24,7 +24,6 @@ esp_err_t meter_dts6619_start(void);
*/
void meter_dts6619_stop(void);
#ifdef __cplusplus
}
#endif

View File

@@ -12,13 +12,13 @@
#define TAG "serial_mdb_ea777"
// ===== UART / RS-485 =====
#define MB_PORT_NUM 2
#define MB_PORT_NUM 1
#define MB_DEV_SPEED 9600
// Ajuste os pinos conforme seu hardware
#define MB_UART_TXD 17
#define MB_UART_RXD 16
#define MB_UART_RTS 2 // pino DE/RE do transceiver RS-485
#define MB_UART_TXD 21
#define MB_UART_RXD 22
#define MB_UART_RTS UART_PIN_NO_CHANGE // sem DE/RE
// ===== Timings =====
#define UPDATE_INTERVAL (5000 / portTICK_PERIOD_MS)
@@ -322,9 +322,10 @@ esp_err_t meter_ea777_init(void)
ESP_ERROR_CHECK(mbc_master_setup(&comm));
ESP_ERROR_CHECK(uart_set_pin(MB_PORT_NUM,
MB_UART_TXD, MB_UART_RXD,
MB_UART_RTS, UART_PIN_NO_CHANGE));
UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE));
ESP_ERROR_CHECK(mbc_master_start());
ESP_ERROR_CHECK(uart_set_mode(MB_PORT_NUM, UART_MODE_RS485_HALF_DUPLEX));
ESP_ERROR_CHECK(uart_set_mode(MB_PORT_NUM, UART_MODE_UART));
// ESP_ERROR_CHECK(uart_set_mode(MB_PORT_NUM, UART_MODE_UART));
vTaskDelay(pdMS_TO_TICKS(50));
ESP_ERROR_CHECK(mbc_master_set_descriptor(device_parameters_ea777,

View File

@@ -12,36 +12,37 @@
#define TAG "meter_zigbee"
// UART config
#define UART_PORT UART_NUM_2
#define TXD_PIN GPIO_NUM_17
#define RXD_PIN GPIO_NUM_16
#define UART_BUF_SIZE 128
#define RX_FRAME_SIZE 14
#define UART_PORT UART_NUM_2
#define TXD_PIN GPIO_NUM_17
#define RXD_PIN GPIO_NUM_16
#define UART_BUF_SIZE 128
#define RX_FRAME_SIZE 14
// Zigbee Attribute IDs
#define ATTR_CURRENT_L1 0x0006
#define ATTR_CURRENT_L2 0x0007
#define ATTR_CURRENT_L3 0x0008
#define ATTR_VOLTAGE_L1 0x0266
#define ATTR_CURRENT_L1_ALT 0x0267
#define ATTR_POWER_L1 0x0268
#define ATTR_VOLTAGE_L2 0x0269
#define ATTR_CURRENT_L2_ALT 0x026A
#define ATTR_POWER_L2 0x026B
#define ATTR_VOLTAGE_L3 0x026C
#define ATTR_CURRENT_L3_ALT 0x026D
#define ATTR_POWER_L3 0x026E
#define ATTR_FREQUENCY 0x0265
#define ATTR_POWER_FACTOR 0x020F
#define ATTR_TOTAL_ENERGY 0x0201
#define ATTR_CURRENT_L1 0x0006
#define ATTR_CURRENT_L2 0x0007
#define ATTR_CURRENT_L3 0x0008
#define ATTR_VOLTAGE_L1 0x0266
#define ATTR_CURRENT_L1_ALT 0x0267
#define ATTR_POWER_L1 0x0268
#define ATTR_VOLTAGE_L2 0x0269
#define ATTR_CURRENT_L2_ALT 0x026A
#define ATTR_POWER_L2 0x026B
#define ATTR_VOLTAGE_L3 0x026C
#define ATTR_CURRENT_L3_ALT 0x026D
#define ATTR_POWER_L3 0x026E
#define ATTR_FREQUENCY 0x0265
#define ATTR_POWER_FACTOR 0x020F
#define ATTR_TOTAL_ENERGY 0x0201
#define PHASE_COUNT 3
#define PHASE_L1 0
#define PHASE_L2 1
#define PHASE_L3 2
#define PHASE_COUNT 3
#define PHASE_L1 0
#define PHASE_L2 1
#define PHASE_L3 2
// Internal meter state
typedef struct {
typedef struct
{
float vrms[PHASE_COUNT];
float irms[PHASE_COUNT];
int watt[PHASE_COUNT];
@@ -58,24 +59,28 @@ static meter_zigbee_data_t meter_data = {0};
static SemaphoreHandle_t meter_mutex = NULL;
static TaskHandle_t meter_zigbee_task = NULL;
bool meter_zigbee_is_running(void) {
bool meter_zigbee_is_running(void)
{
return meter_zigbee_task != NULL;
}
void send_stop_command(void) {
//const char *cmd = "stop\n"; // Comando enviado para o outro lado interpretar e dormir
//uart_write_bytes(UART_PORT, cmd, strlen(cmd));
//uart_wait_tx_done(UART_PORT, pdMS_TO_TICKS(100)); // Aguarda envio terminar
static inline int32_t tuya_power16_to_signed(uint16_t p)
{
// Igual ao quirk multi_dp_to_power()
if (p > 0x7FFF)
{
return (int32_t)((0x999A - p) * -1);
}
return (int32_t)p;
}
static void meter_zigbee_post_event(void) {
static void meter_zigbee_post_event(void)
{
meter_event_data_t evt = {
.source = "GRID",
.frequency = meter_data.frequency,
.power_factor = meter_data.power_factor,
.total_energy = meter_data.total_energy
};
.total_energy = meter_data.total_energy};
memcpy(evt.vrms, meter_data.vrms, sizeof(evt.vrms));
memcpy(evt.irms, meter_data.irms, sizeof(evt.irms));
@@ -87,17 +92,19 @@ static void meter_zigbee_post_event(void) {
sizeof(evt),
portMAX_DELAY);
if (err != ESP_OK) {
if (err != ESP_OK)
{
ESP_LOGW(TAG, "Falha ao emitir evento: %s", esp_err_to_name(err));
}
}
static void handle_zigbee_frame(const uint8_t *buf, size_t len) {
static void handle_zigbee_frame(const uint8_t *buf, size_t len)
{
ESP_LOGD(TAG, "Received UART frame (%d bytes):", len);
//ESP_LOG_BUFFER_HEX(TAG, buf, len);
// ESP_LOG_BUFFER_HEX(TAG, buf, len);
if (len < RX_FRAME_SIZE) {
if (len < RX_FRAME_SIZE)
{
ESP_LOGW(TAG, "Invalid frame: too short (len = %d)", len);
return;
}
@@ -105,70 +112,85 @@ static void handle_zigbee_frame(const uint8_t *buf, size_t len) {
uint16_t attr = buf[2] | (buf[3] << 8);
uint8_t size = buf[5];
if (size != 8) {
if (size != 8)
{
ESP_LOGW(TAG, "Unsupported payload size: %d", size);
return;
}
uint16_t volt_raw = (buf[6] << 8) | buf[7];
uint32_t current_raw = (buf[8] << 16) | (buf[9] << 8) | buf[10];
uint32_t power_raw = (buf[11] << 16) | (buf[12] << 8) | buf[13];
// payload 8 bytes começa em buf[6]
const uint8_t *p = &buf[6];
float volt = volt_raw / 10.0f;
float current = current_raw / 1000.0f;
float power = power_raw;
uint16_t volt_raw = ((uint16_t)p[0] << 8) | p[1];
ESP_LOGD(TAG, "Parsed Attr 0x%04X: V=%.1fV I=%.2fA P=%.1fW", attr, volt, current, power);
uint16_t curr_raw_u16 = ((uint16_t)p[3] << 8) | p[4]; // 2 bytes
uint16_t pow_raw_u16 = ((uint16_t)p[6] << 8) | p[7]; // 2 bytes
if (xSemaphoreTake(meter_mutex, pdMS_TO_TICKS(10)) == pdTRUE) {
switch (attr) {
case ATTR_CURRENT_L1:
case ATTR_CURRENT_L1_ALT:
meter_data.irms[PHASE_L1] = current;
meter_data.vrms[PHASE_L1] = volt;
meter_data.watt[PHASE_L1] = (int)power;
phase_updated[PHASE_L1] = true;
break;
case ATTR_CURRENT_L2:
case ATTR_CURRENT_L2_ALT:
meter_data.irms[PHASE_L2] = current;
meter_data.vrms[PHASE_L2] = volt;
meter_data.watt[PHASE_L2] = (int)power;
phase_updated[PHASE_L2] = true;
break;
case ATTR_CURRENT_L3:
case ATTR_CURRENT_L3_ALT:
meter_data.irms[PHASE_L3] = current;
meter_data.vrms[PHASE_L3] = volt;
meter_data.watt[PHASE_L3] = (int)power;
phase_updated[PHASE_L3] = true;
break;
case ATTR_POWER_FACTOR:
meter_data.power_factor = 0;
break;
case ATTR_FREQUENCY:
meter_data.frequency = 0;
break;
case ATTR_TOTAL_ENERGY:
meter_data.total_energy = 0;
break;
default:
ESP_LOGW(TAG, "Unknown attr: 0x%04X", attr);
break;
int32_t power = tuya_power16_to_signed(pow_raw_u16);
float volt = volt_raw / 10.0f;
float curr = curr_raw_u16 / 1000.0f;
// Se queres “corrente com sinal”, deriva pelo sinal da potência:
float current = (power < 0) ? -curr : curr;
ESP_LOGD(TAG, "Attr 0x%04X: V=%.1fV I=%.3fA (signed=%+.3fA) P=%+ldW",
attr, volt, curr, current, (long)power);
if (xSemaphoreTake(meter_mutex, pdMS_TO_TICKS(10)) == pdTRUE)
{
switch (attr)
{
case ATTR_CURRENT_L1:
case ATTR_CURRENT_L1_ALT:
meter_data.irms[PHASE_L1] = current;
meter_data.vrms[PHASE_L1] = volt;
meter_data.watt[PHASE_L1] = (int)power;
phase_updated[PHASE_L1] = true;
break;
case ATTR_CURRENT_L2:
case ATTR_CURRENT_L2_ALT:
meter_data.irms[PHASE_L2] = current;
meter_data.vrms[PHASE_L2] = volt;
meter_data.watt[PHASE_L2] = (int)power;
phase_updated[PHASE_L2] = true;
break;
case ATTR_CURRENT_L3:
case ATTR_CURRENT_L3_ALT:
meter_data.irms[PHASE_L3] = current;
meter_data.vrms[PHASE_L3] = volt;
meter_data.watt[PHASE_L3] = (int)power;
phase_updated[PHASE_L3] = true;
break;
case ATTR_POWER_FACTOR:
meter_data.power_factor = 0;
break;
case ATTR_FREQUENCY:
meter_data.frequency = 0;
break;
case ATTR_TOTAL_ENERGY:
meter_data.total_energy = 0;
break;
default:
ESP_LOGW(TAG, "Unknown attr: 0x%04X", attr);
break;
}
xSemaphoreGive(meter_mutex);
}
// Verifica se todas as 3 fases foram atualizadas
if (phase_updated[PHASE_L1] && phase_updated[PHASE_L2] && phase_updated[PHASE_L3]) {
if (phase_updated[PHASE_L1] && phase_updated[PHASE_L2] && phase_updated[PHASE_L3])
{
meter_zigbee_post_event();
memset(phase_updated, 0, sizeof(phase_updated));
}
}
static void meter_zigbee_task_func(void *param) {
static void meter_zigbee_task_func(void *param)
{
uint8_t *buf = malloc(RX_FRAME_SIZE);
if (!buf) {
if (!buf)
{
ESP_LOGE(TAG, "Failed to allocate buffer");
vTaskDelete(NULL);
return;
@@ -176,13 +198,19 @@ static void meter_zigbee_task_func(void *param) {
ESP_LOGI(TAG, "Zigbee meter task started");
while (1) {
while (1)
{
int len = uart_read_bytes(UART_PORT, buf, RX_FRAME_SIZE, pdMS_TO_TICKS(5000));
if (len == RX_FRAME_SIZE) {
if (len == RX_FRAME_SIZE)
{
handle_zigbee_frame(buf, len);
} else if (len == 0) {
}
else if (len == 0)
{
ESP_LOGD(TAG, "UART timeout with no data");
} else {
}
else
{
ESP_LOGW(TAG, "Incomplete frame received (%d bytes)", len);
}
}
@@ -191,22 +219,24 @@ static void meter_zigbee_task_func(void *param) {
vTaskDelete(NULL);
}
esp_err_t meter_zigbee_init(void) {
esp_err_t meter_zigbee_init(void)
{
ESP_LOGI(TAG, "Initializing Zigbee meter");
if (!meter_mutex) {
if (!meter_mutex)
{
meter_mutex = xSemaphoreCreateMutex();
if (!meter_mutex) return ESP_ERR_NO_MEM;
if (!meter_mutex)
return ESP_ERR_NO_MEM;
}
uart_config_t config = {
.baud_rate = 115200,
.data_bits = UART_DATA_8_BITS,
.parity = UART_PARITY_DISABLE,
.parity = UART_PARITY_DISABLE,
.stop_bits = UART_STOP_BITS_1,
.flow_ctrl = UART_HW_FLOWCTRL_DISABLE,
.source_clk = UART_SCLK_DEFAULT
};
.source_clk = UART_SCLK_DEFAULT};
ESP_ERROR_CHECK(uart_param_config(UART_PORT, &config));
ESP_ERROR_CHECK(uart_set_pin(UART_PORT, TXD_PIN, RXD_PIN, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE));
@@ -215,25 +245,28 @@ esp_err_t meter_zigbee_init(void) {
return ESP_OK;
}
esp_err_t meter_zigbee_start(void) {
if (meter_zigbee_task) return ESP_ERR_INVALID_STATE;
esp_err_t meter_zigbee_start(void)
{
if (meter_zigbee_task)
return ESP_ERR_INVALID_STATE;
xTaskCreate(meter_zigbee_task_func, "meter_zigbee_task", 4096, NULL, 3, &meter_zigbee_task);
return ESP_OK;
}
void meter_zigbee_stop(void)
{
void meter_zigbee_stop(void) {
if (meter_zigbee_task) {
if (meter_zigbee_task)
{
vTaskDelete(meter_zigbee_task);
meter_zigbee_task = NULL;
}
uart_driver_delete(UART_PORT);
if (meter_mutex) {
if (meter_mutex)
{
vSemaphoreDelete(meter_mutex);
meter_mutex = NULL;
}

View File

@@ -2,42 +2,53 @@
#define METER_EVENTS_H
#include "esp_event.h"
#include "meter_manager.h" // Para meter_type_t
#include <stdint.h> // Para int64_t
#include "meter_manager.h" // meter_type_t
#include <stdint.h> // int32_t, int64_t
#ifdef __cplusplus
extern "C" {
extern "C"
{
#endif
// Base de eventos dos medidores
ESP_EVENT_DECLARE_BASE(METER_EVENT);
// Base de eventos dos medidores
ESP_EVENT_DECLARE_BASE(METER_EVENT);
// IDs de eventos emitidos por medidores
typedef enum {
METER_EVENT_DATA_READY = 0,
METER_EVENT_ERROR,
METER_EVENT_STARTED,
METER_EVENT_STOPPED,
METER_EVENT_CONFIG_UPDATED // Novo: configuração (grid/evse) atualizada
} meter_event_id_t;
// IDs de eventos emitidos por medidores
typedef enum
{
METER_EVENT_DATA_READY = 0,
METER_EVENT_ERROR,
METER_EVENT_STARTED,
METER_EVENT_STOPPED,
METER_EVENT_CONFIG_UPDATED
} meter_event_id_t;
// Estrutura de dados enviados com METER_EVENT_DATA_READY
typedef struct {
const char *source; // "GRID" ou "EVSE"
float vrms[3]; // Tensão por fase
float irms[3]; // Corrente por fase
int watt[3]; // Potência ativa por fase
float frequency; // Frequência da rede (Hz)
float power_factor; // Fator de potência
float total_energy; // Energia acumulada (kWh)
} meter_event_data_t;
// Estrutura de dados enviados com METER_EVENT_DATA_READY
// NOTA: campos não suportados pelo meter devem ficar a 0.
typedef struct
{
const char *source; // "GRID" ou "EVSE"
// Estrutura de dados enviados com METER_EVENT_CONFIG_UPDATED
typedef struct {
meter_type_t grid_type; // Tipo de contador configurado para o GRID
meter_type_t evse_type; // Tipo de contador configurado para a EVSE
int64_t timestamp_us; // Momento da atualização (esp_timer_get_time)
} meter_config_event_t;
float vrms[3]; // V por fase (0 se não existir)
float irms[3]; // A por fase (0 se não existir)
int32_t watt[3]; // W por fase (0 se não existir)
int32_t watt_total; // W total ASSINADO: +import / -export (0 se não existir)
float frequency; // Hz (0 se não existir)
float power_factor; // (0 se não existir)
float total_energy; // kWh (0 se não existir)
int64_t timestamp_us; // esp_timer_get_time() (0 => consumidor pode usar "now")
} meter_event_data_t;
// Estrutura de dados enviados com METER_EVENT_CONFIG_UPDATED
typedef struct
{
meter_type_t grid_type;
meter_type_t evse_type;
int64_t timestamp_us; // esp_timer_get_time()
} meter_config_event_t;
#ifdef __cplusplus
}

View File

@@ -17,7 +17,8 @@ typedef enum {
METER_TYPE_DTS6619, // dts6619
METER_TYPE_MONO_ZIGBEE, // Zigbee single-phase
METER_TYPE_TRIF_ZIGBEE, // Zigbee three-phase
METER_TYPE_EA777 // EA777
METER_TYPE_EA777, // EA777
METER_TYPE_DTS024M,
} meter_type_t;
/**

View File

@@ -9,6 +9,7 @@
#include "meter_dds661.h"
#include "meter_zigbee.h"
#include "meter_ea777.h"
#include "meter_dts024m.h"
#include <string.h>
@@ -239,6 +240,8 @@ esp_err_t meter_manager_evse_init()
return meter_dds661_init();
case METER_TYPE_EA777:
return meter_ea777_init();
case METER_TYPE_DTS024M:
return meter_dts024m_init();
case METER_TYPE_MONO_ZIGBEE:
case METER_TYPE_TRIF_ZIGBEE:
return meter_zigbee_init();
@@ -268,6 +271,8 @@ esp_err_t meter_manager_evse_start()
return meter_dds661_start();
case METER_TYPE_EA777:
return meter_ea777_start();
case METER_TYPE_DTS024M:
return meter_dts024m_start();
case METER_TYPE_MONO_ZIGBEE:
case METER_TYPE_TRIF_ZIGBEE:
return meter_zigbee_start();
@@ -304,6 +309,9 @@ esp_err_t meter_manager_evse_stop(void)
case METER_TYPE_EA777:
meter_ea777_stop();
break;
case METER_TYPE_DTS024M:
meter_dts024m_stop();
break;
case METER_TYPE_MONO_ZIGBEE:
case METER_TYPE_TRIF_ZIGBEE:
meter_zigbee_stop();
@@ -342,6 +350,8 @@ esp_err_t meter_manager_grid_init()
return meter_dds661_init();
case METER_TYPE_EA777:
return meter_ea777_init();
case METER_TYPE_DTS024M:
return meter_dts024m_init();
case METER_TYPE_MONO_ZIGBEE:
case METER_TYPE_TRIF_ZIGBEE:
return meter_zigbee_init();
@@ -371,6 +381,8 @@ esp_err_t meter_manager_grid_start()
return meter_dds661_start();
case METER_TYPE_EA777:
return meter_ea777_start();
case METER_TYPE_DTS024M:
return meter_dts024m_start();
case METER_TYPE_MONO_ZIGBEE:
case METER_TYPE_TRIF_ZIGBEE:
return meter_zigbee_start();
@@ -407,6 +419,9 @@ esp_err_t meter_manager_grid_stop(void)
case METER_TYPE_EA777:
meter_ea777_stop();
break;
case METER_TYPE_DTS024M:
meter_dts024m_stop();
break;
case METER_TYPE_MONO_ZIGBEE:
case METER_TYPE_TRIF_ZIGBEE:
meter_zigbee_stop();
@@ -509,6 +524,8 @@ const char *meter_type_to_str(meter_type_t type)
return "TRIF-ZIGBEE";
case METER_TYPE_EA777:
return "EA-777";
case METER_TYPE_DTS024M:
return "DTS-024M";
default:
return "NENHUM";
}
@@ -537,6 +554,8 @@ meter_type_t string_to_meter_type(const char *str)
return METER_TYPE_TRIF_ZIGBEE;
if (strcmp(str, "EA-777") == 0)
return METER_TYPE_EA777;
if (strcmp(str, "DTS-024M") == 0)
return METER_TYPE_DTS024M;
return METER_TYPE_NONE;
}