Files
chargeflow/components/meter_manager/driver/meter_modbus/meter_orno526.c
2026-01-24 16:56:51 +00:00

311 lines
9.3 KiB
C
Executable File

#include "meter_orno526.h"
#include "modbus_params.h"
#include "mbcontroller.h"
#include "meter_events.h"
#include "esp_log.h"
#include "driver/uart.h"
#include <stddef.h>
#include <math.h>
#define TAG "serial_mdb_orno526"
#define MB_PORT_NUM 2
#define MB_DEV_SPEED 9600
#define MB_UART_TXD 17
#define MB_UART_RXD 16
#define MB_UART_RTS 2
#define UPDATE_INTERVAL (3000 / portTICK_PERIOD_MS)
#define POLL_INTERVAL (100 / portTICK_PERIOD_MS)
#define HOLD_OFFSET(field) ((uint16_t)(offsetof(holding_reg_params_t, field) + 1))
#define STR(x) ((const char *)(x))
#define OPTS(min, max, step) {.opt1 = min, .opt2 = max, .opt3 = step}
// State flag
static bool is_initialized = false;
static TaskHandle_t meter_task = NULL;
// CID enums
enum
{
CID_ACTIVE_ENERGY = 0,
CID_REACTIVE_ENERGY,
CID_ACTIVE_POWER,
CID_APPARENT_POWER,
CID_REACTIVE_POWER,
CID_L1_CURRENT,
CID_L1_VOLTAGE,
CID_FREQUENCY
};
// Register addresses
#define TOTALFACTIVE 0x010E
#define TOTALRACTIVE 0x0118
#define ACTIVEPOWER 0x0104
#define APPARENTPOWER 0x0106
#define REACTIVEPOWER 0x0108
#define L1CURRENT 0x0102
#define L1VOLTAGE 0x0100
#define FREQUENCY 0x010A
const mb_parameter_descriptor_t device_parameters_orno526[] = {
{CID_ACTIVE_ENERGY, "Active Energy", "kWh", 1,
MB_PARAM_INPUT, TOTALFACTIVE, 2, HOLD_OFFSET(active_energy),
PARAM_TYPE_I32_CDAB, 4, OPTS(0, 100000, 1), PAR_PERMS_READ},
{CID_REACTIVE_ENERGY, "Reactive Energy", "kWh", 1,
MB_PARAM_INPUT, TOTALRACTIVE, 2, HOLD_OFFSET(reactive_energy),
PARAM_TYPE_I32_CDAB, 4, OPTS(0, 100000, 1), PAR_PERMS_READ},
{CID_ACTIVE_POWER, "Active Power", "W", 1,
MB_PARAM_INPUT, ACTIVEPOWER, 2, HOLD_OFFSET(active_power),
PARAM_TYPE_I32_CDAB, 4, OPTS(-100000, 100000, 1), PAR_PERMS_READ},
{CID_APPARENT_POWER, "Apparent Power", "VA", 1,
MB_PARAM_INPUT, APPARENTPOWER, 2, HOLD_OFFSET(apparent_power),
PARAM_TYPE_I32_CDAB, 4, OPTS(0, 100000, 1), PAR_PERMS_READ},
{CID_REACTIVE_POWER, "Reactive Power", "VAR", 1,
MB_PARAM_INPUT, REACTIVEPOWER, 2, HOLD_OFFSET(reactive_power),
PARAM_TYPE_I32_CDAB, 4, OPTS(-100000, 100000, 1), PAR_PERMS_READ},
{CID_L1_CURRENT, "L1 Current", "A", 1,
MB_PARAM_INPUT, L1CURRENT, 2, HOLD_OFFSET(l1_current),
PARAM_TYPE_I32_CDAB, 4, OPTS(0, 100, 0.1), PAR_PERMS_READ},
{CID_L1_VOLTAGE, "L1 Voltage", "V", 1,
MB_PARAM_INPUT, L1VOLTAGE, 2, HOLD_OFFSET(l1_voltage),
PARAM_TYPE_I32_CDAB, 4, OPTS(0, 300, 0.1), PAR_PERMS_READ},
{CID_FREQUENCY, "Frequency", "Hz", 1,
MB_PARAM_INPUT, FREQUENCY, 1, HOLD_OFFSET(frequency),
PARAM_TYPE_I32_CDAB, 2, OPTS(0, 1000, 0.1), PAR_PERMS_READ}
};
const uint16_t num_device_parameters_orno526 = sizeof(device_parameters_orno526) / sizeof(device_parameters_orno526[0]);
static void *get_param_ptr(const mb_parameter_descriptor_t *param)
{
if (!param || param->param_offset == 0)
return NULL;
return ((uint8_t *)&holding_reg_params + param->param_offset - 1);
}
static inline float scale_for_cid(uint16_t cid)
{
switch (cid)
{
case CID_L1_VOLTAGE:
case CID_L1_CURRENT:
return 1000.0f; // V/A = raw / 1000
case CID_ACTIVE_POWER:
case CID_APPARENT_POWER:
case CID_REACTIVE_POWER:
return 1.0f; // W/VA/var = raw
case CID_ACTIVE_ENERGY:
case CID_REACTIVE_ENERGY:
return 100.0f; // kWh = raw / 100
case CID_FREQUENCY:
return 10.0f; // Hz = raw / 10
default:
return 1.0f;
}
}
static void serial_mdb_task(void *param)
{
esp_err_t err;
const mb_parameter_descriptor_t *desc = NULL;
float voltage[3] = {0};
float current[3] = {0};
int watt[3] = {0};
float energy = 0.0f;
float frequency_hz = 0.0f; // <- armazenar frequência lida (0x010A)
while (1)
{
for (uint16_t cid = 0; cid < num_device_parameters_orno526; cid++)
{
err = mbc_master_get_cid_info(cid, &desc);
if (err != ESP_OK || !desc)
{
ESP_LOGE(TAG, "mbc_master_get_cid_info(%u) failed: %s", cid, esp_err_to_name(err));
continue;
}
void *data_ptr = get_param_ptr(desc);
if (!data_ptr)
{
ESP_LOGE(TAG, "CID %u (%s): null data_ptr", cid, desc->param_key);
continue;
}
uint8_t type = 0;
err = mbc_master_get_parameter(cid, (char *)desc->param_key, (uint8_t *)data_ptr, &type);
if (err == ESP_OK)
{
float val = 0.0f;
if (cid == CID_FREQUENCY)
{
// Frequência é U16 (1 registo), escala = /10.0
uint16_t raw16 = *(uint16_t *)data_ptr;
val = raw16 / 10.0f;
frequency_hz = val;
}
else
{
// Demais CIDs são I32_CDAB (2 registos)
int32_t raw32 = *(int32_t *)data_ptr;
float scale = scale_for_cid(cid);
val = raw32 / scale;
}
ESP_LOGI(TAG, "%s: %.3f %s", desc->param_key, val, desc->param_units);
switch (cid)
{
case CID_L1_VOLTAGE:
voltage[0] = val;
break;
case CID_L1_CURRENT:
current[0] = val;
break;
case CID_ACTIVE_POWER:
watt[0] = (int)lrintf(val);
watt[1] = watt[2] = watt[0];
break;
case CID_ACTIVE_ENERGY:
energy = val; // já em kWh (raw/100)
break;
// CID_FREQUENCY já atualiza 'frequency_hz' acima
default:
break;
}
}
else
{
ESP_LOGE(TAG, "CID %u (%s) read failed: %s", cid, desc->param_key, esp_err_to_name(err));
}
vTaskDelay(POLL_INTERVAL);
}
meter_event_data_t evt = {
.frequency = frequency_hz, // agora preenchido
.power_factor = 0.0f, // (adicione PF se quiser ler 0x010B)
.total_energy = energy,
.source = "GRID",
};
memcpy(evt.vrms, voltage, sizeof(evt.vrms));
memcpy(evt.irms, current, sizeof(evt.irms));
memcpy(evt.watt, watt, sizeof(evt.watt));
esp_event_post(METER_EVENT, METER_EVENT_DATA_READY, &evt, sizeof(evt), portMAX_DELAY);
vTaskDelay(UPDATE_INTERVAL);
}
}
esp_err_t meter_orno526_init(void)
{
if (is_initialized)
{
ESP_LOGW(TAG, "meter_orno526 already initialized");
return ESP_ERR_INVALID_STATE;
}
ESP_LOGI(TAG, "meter_orno526_init");
// ORNO costuma vir 9600, 8E1. Se o teu estiver 8E2, troca os stop bits mais abaixo.
mb_communication_info_t comm = {
.port = MB_PORT_NUM,
.mode = MB_MODE_RTU,
.baudrate = MB_DEV_SPEED, // 9600
.parity = UART_PARITY_DISABLE, // 8E1 por padrão
};
void *handler = NULL;
esp_err_t err = mbc_master_init(MB_PORT_SERIAL_MASTER, &handler);
if (err != ESP_OK)
{
ESP_LOGE(TAG, "mbc_master_init failed");
return err;
}
ESP_ERROR_CHECK(mbc_master_setup(&comm));
// Pinos RS-485 (TX, RX, RTS=DE/RE). CTS não usado.
ESP_ERROR_CHECK(uart_set_pin(MB_PORT_NUM, MB_UART_TXD, MB_UART_RXD, MB_UART_RTS, UART_PIN_NO_CHANGE));
// Garanta 8 bits de dados e sem flow-control.
ESP_ERROR_CHECK(uart_set_word_length(MB_PORT_NUM, UART_DATA_8_BITS));
ESP_ERROR_CHECK(uart_set_hw_flow_ctrl(MB_PORT_NUM, UART_HW_FLOWCTRL_DISABLE, 0));
// Stop bits: a maioria usa 1. Se continuar a dar INVALID_RESPONSE, teste 2.
ESP_ERROR_CHECK(uart_set_stop_bits(MB_PORT_NUM, UART_STOP_BITS_1));
// Alternativa, se o medidor estiver configurado p/ 2 stop bits:
// ESP_ERROR_CHECK(uart_set_stop_bits(MB_PORT_NUM, UART_STOP_BITS_2));
ESP_ERROR_CHECK(mbc_master_start());
ESP_ERROR_CHECK(uart_set_mode(MB_PORT_NUM, UART_MODE_RS485_HALF_DUPLEX));
// (Opcional) Logs detalhados para ver TX/RX/frames durante debug:
esp_log_level_set("MB_CONTROLLER_MASTER", ESP_LOG_DEBUG);
esp_log_level_set("MB_PORT_COMMON", ESP_LOG_DEBUG);
esp_log_level_set("MB_SERIAL_MASTER", ESP_LOG_DEBUG);
vTaskDelay(pdMS_TO_TICKS(5));
ESP_ERROR_CHECK(mbc_master_set_descriptor(device_parameters_orno526, num_device_parameters_orno526));
is_initialized = true;
return ESP_OK;
}
esp_err_t meter_orno526_start(void)
{
ESP_LOGI(TAG, "meter_orno526_start");
if (!is_initialized)
{
ESP_LOGE(TAG, "meter_orno526 not initialized");
return ESP_ERR_INVALID_STATE;
}
if (meter_task == NULL)
{
xTaskCreate(serial_mdb_task, "meter_orno526_task", 4096, NULL, 3, &meter_task);
ESP_LOGI(TAG, "meter_orno526 task started");
}
return ESP_OK;
}
void meter_orno526_stop(void)
{
if (!is_initialized)
{
ESP_LOGW(TAG, "meter_orno526 not initialized");
return;
}
ESP_LOGI(TAG, "Stopping meter_orno526");
uart_driver_delete(MB_PORT_NUM);
esp_err_t err = mbc_master_destroy();
if (err != ESP_OK)
{
ESP_LOGW(TAG, "mbc_master_destroy() returned %s", esp_err_to_name(err));
}
is_initialized = false;
}