Files
2026-01-24 16:56:51 +00:00

273 lines
7.1 KiB
C
Executable File

#include "meter_zigbee.h"
#include <string.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/semphr.h"
#include "esp_log.h"
#include "esp_system.h"
#include "driver/uart.h"
#include "driver/gpio.h"
#include "meter_events.h"
#define TAG "meter_zigbee"
// UART config
#define UART_PORT UART_NUM_2
#define TXD_PIN GPIO_NUM_17
#define RXD_PIN GPIO_NUM_16
#define UART_BUF_SIZE 128
#define RX_FRAME_SIZE 14
// Zigbee Attribute IDs
#define ATTR_CURRENT_L1 0x0006
#define ATTR_CURRENT_L2 0x0007
#define ATTR_CURRENT_L3 0x0008
#define ATTR_VOLTAGE_L1 0x0266
#define ATTR_CURRENT_L1_ALT 0x0267
#define ATTR_POWER_L1 0x0268
#define ATTR_VOLTAGE_L2 0x0269
#define ATTR_CURRENT_L2_ALT 0x026A
#define ATTR_POWER_L2 0x026B
#define ATTR_VOLTAGE_L3 0x026C
#define ATTR_CURRENT_L3_ALT 0x026D
#define ATTR_POWER_L3 0x026E
#define ATTR_FREQUENCY 0x0265
#define ATTR_POWER_FACTOR 0x020F
#define ATTR_TOTAL_ENERGY 0x0201
#define PHASE_COUNT 3
#define PHASE_L1 0
#define PHASE_L2 1
#define PHASE_L3 2
// Internal meter state
typedef struct
{
float vrms[PHASE_COUNT];
float irms[PHASE_COUNT];
int watt[PHASE_COUNT];
int var[PHASE_COUNT];
int va[PHASE_COUNT];
float frequency;
float power_factor;
float total_energy;
} meter_zigbee_data_t;
static bool phase_updated[PHASE_COUNT] = {false, false, false};
static meter_zigbee_data_t meter_data = {0};
static SemaphoreHandle_t meter_mutex = NULL;
static TaskHandle_t meter_zigbee_task = NULL;
bool meter_zigbee_is_running(void)
{
return meter_zigbee_task != NULL;
}
static inline int32_t tuya_power16_to_signed(uint16_t p)
{
// Igual ao quirk multi_dp_to_power()
if (p > 0x7FFF)
{
return (int32_t)((0x999A - p) * -1);
}
return (int32_t)p;
}
static void meter_zigbee_post_event(void)
{
meter_event_data_t evt = {
.source = "GRID",
.frequency = meter_data.frequency,
.power_factor = meter_data.power_factor,
.total_energy = meter_data.total_energy};
memcpy(evt.vrms, meter_data.vrms, sizeof(evt.vrms));
memcpy(evt.irms, meter_data.irms, sizeof(evt.irms));
memcpy(evt.watt, meter_data.watt, sizeof(evt.watt));
esp_err_t err = esp_event_post(METER_EVENT,
METER_EVENT_DATA_READY,
&evt,
sizeof(evt),
portMAX_DELAY);
if (err != ESP_OK)
{
ESP_LOGW(TAG, "Falha ao emitir evento: %s", esp_err_to_name(err));
}
}
static void handle_zigbee_frame(const uint8_t *buf, size_t len)
{
ESP_LOGD(TAG, "Received UART frame (%d bytes):", len);
// ESP_LOG_BUFFER_HEX(TAG, buf, len);
if (len < RX_FRAME_SIZE)
{
ESP_LOGW(TAG, "Invalid frame: too short (len = %d)", len);
return;
}
uint16_t attr = buf[2] | (buf[3] << 8);
uint8_t size = buf[5];
if (size != 8)
{
ESP_LOGW(TAG, "Unsupported payload size: %d", size);
return;
}
// payload 8 bytes começa em buf[6]
const uint8_t *p = &buf[6];
uint16_t volt_raw = ((uint16_t)p[0] << 8) | p[1];
uint16_t curr_raw_u16 = ((uint16_t)p[3] << 8) | p[4]; // 2 bytes
uint16_t pow_raw_u16 = ((uint16_t)p[6] << 8) | p[7]; // 2 bytes
int32_t power = tuya_power16_to_signed(pow_raw_u16);
float volt = volt_raw / 10.0f;
float curr = curr_raw_u16 / 1000.0f;
// Se queres “corrente com sinal”, deriva pelo sinal da potência:
float current = (power < 0) ? -curr : curr;
ESP_LOGD(TAG, "Attr 0x%04X: V=%.1fV I=%.3fA (signed=%+.3fA) P=%+ldW",
attr, volt, curr, current, (long)power);
if (xSemaphoreTake(meter_mutex, pdMS_TO_TICKS(10)) == pdTRUE)
{
switch (attr)
{
case ATTR_CURRENT_L1:
case ATTR_CURRENT_L1_ALT:
meter_data.irms[PHASE_L1] = current;
meter_data.vrms[PHASE_L1] = volt;
meter_data.watt[PHASE_L1] = (int)power;
phase_updated[PHASE_L1] = true;
break;
case ATTR_CURRENT_L2:
case ATTR_CURRENT_L2_ALT:
meter_data.irms[PHASE_L2] = current;
meter_data.vrms[PHASE_L2] = volt;
meter_data.watt[PHASE_L2] = (int)power;
phase_updated[PHASE_L2] = true;
break;
case ATTR_CURRENT_L3:
case ATTR_CURRENT_L3_ALT:
meter_data.irms[PHASE_L3] = current;
meter_data.vrms[PHASE_L3] = volt;
meter_data.watt[PHASE_L3] = (int)power;
phase_updated[PHASE_L3] = true;
break;
case ATTR_POWER_FACTOR:
meter_data.power_factor = 0;
break;
case ATTR_FREQUENCY:
meter_data.frequency = 0;
break;
case ATTR_TOTAL_ENERGY:
meter_data.total_energy = 0;
break;
default:
ESP_LOGW(TAG, "Unknown attr: 0x%04X", attr);
break;
}
xSemaphoreGive(meter_mutex);
}
// Verifica se todas as 3 fases foram atualizadas
if (phase_updated[PHASE_L1] && phase_updated[PHASE_L2] && phase_updated[PHASE_L3])
{
meter_zigbee_post_event();
memset(phase_updated, 0, sizeof(phase_updated));
}
}
static void meter_zigbee_task_func(void *param)
{
uint8_t *buf = malloc(RX_FRAME_SIZE);
if (!buf)
{
ESP_LOGE(TAG, "Failed to allocate buffer");
vTaskDelete(NULL);
return;
}
ESP_LOGI(TAG, "Zigbee meter task started");
while (1)
{
int len = uart_read_bytes(UART_PORT, buf, RX_FRAME_SIZE, pdMS_TO_TICKS(5000));
if (len == RX_FRAME_SIZE)
{
handle_zigbee_frame(buf, len);
}
else if (len == 0)
{
ESP_LOGD(TAG, "UART timeout with no data");
}
else
{
ESP_LOGW(TAG, "Incomplete frame received (%d bytes)", len);
}
}
free(buf);
vTaskDelete(NULL);
}
esp_err_t meter_zigbee_init(void)
{
ESP_LOGI(TAG, "Initializing Zigbee meter");
if (!meter_mutex)
{
meter_mutex = xSemaphoreCreateMutex();
if (!meter_mutex)
return ESP_ERR_NO_MEM;
}
uart_config_t config = {
.baud_rate = 115200,
.data_bits = UART_DATA_8_BITS,
.parity = UART_PARITY_DISABLE,
.stop_bits = UART_STOP_BITS_1,
.flow_ctrl = UART_HW_FLOWCTRL_DISABLE,
.source_clk = UART_SCLK_DEFAULT};
ESP_ERROR_CHECK(uart_param_config(UART_PORT, &config));
ESP_ERROR_CHECK(uart_set_pin(UART_PORT, TXD_PIN, RXD_PIN, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE));
ESP_ERROR_CHECK(uart_driver_install(UART_PORT, UART_BUF_SIZE * 2, 0, 0, NULL, 0));
return ESP_OK;
}
esp_err_t meter_zigbee_start(void)
{
if (meter_zigbee_task)
return ESP_ERR_INVALID_STATE;
xTaskCreate(meter_zigbee_task_func, "meter_zigbee_task", 4096, NULL, 3, &meter_zigbee_task);
return ESP_OK;
}
void meter_zigbee_stop(void)
{
if (meter_zigbee_task)
{
vTaskDelete(meter_zigbee_task);
meter_zigbee_task = NULL;
}
uart_driver_delete(UART_PORT);
if (meter_mutex)
{
vSemaphoreDelete(meter_mutex);
meter_mutex = NULL;
}
}