// === Início de: main/main.c === #include #include #include #include "freertos/FreeRTOS.h" #include "freertos/task.h" #include "freertos/event_groups.h" #include "esp_log.h" #include "esp_err.h" #include "esp_event.h" #include "esp_netif.h" #include "esp_spiffs.h" #include "esp_system.h" #include "nvs_flash.h" #include "driver/gpio.h" #include "wifi.h" #include "board_config.h" #include "logger.h" #include "rest_main.h" #include "peripherals.h" #include "protocols.h" #include "evse_manager.h" #include "evse_api.h" #include "auth.h" #include "loadbalancer.h" #include "meter_manager.h" #define EVSE_MANAGER_TICK_PERIOD_MS 1000 #define AP_CONNECTION_TIMEOUT 120000 #define RESET_HOLD_TIME 10000 #define DEBOUNCE_TIME_MS 50 #define PRESS_BIT BIT0 #define RELEASED_BIT BIT1 static const char *TAG = "app_main"; static TaskHandle_t user_input_task; static TickType_t press_tick = 0; static TickType_t last_interrupt_tick = 0; static bool pressed = false; // // File system (SPIFFS) init and info // static void fs_info(esp_vfs_spiffs_conf_t *conf) { size_t total = 0, used = 0; esp_err_t ret = esp_spiffs_info(conf->partition_label, &total, &used); if (ret == ESP_OK) ESP_LOGI(TAG, "Partition %s: total: %d, used: %d", conf->partition_label, total, used); else ESP_LOGE(TAG, "Failed to get SPIFFS info: %s", esp_err_to_name(ret)); } static void fs_init(void) { esp_vfs_spiffs_conf_t cfg_conf = { .base_path = "/cfg", .partition_label = "cfg", .max_files = 1, .format_if_mount_failed = false }; esp_vfs_spiffs_conf_t data_conf = { .base_path = "/data", .partition_label = "data", .max_files = 5, .format_if_mount_failed = true }; ESP_ERROR_CHECK(esp_vfs_spiffs_register(&cfg_conf)); ESP_ERROR_CHECK(esp_vfs_spiffs_register(&data_conf)); fs_info(&cfg_conf); fs_info(&data_conf); } // // Wi-Fi event monitoring task // static void wifi_event_task_func(void *param) { EventBits_t mode_bits; while (1) { mode_bits = xEventGroupWaitBits(wifi_event_group, WIFI_AP_MODE_BIT | WIFI_STA_MODE_BIT, pdFALSE, pdFALSE, portMAX_DELAY); if (mode_bits & WIFI_AP_MODE_BIT) { if (xEventGroupWaitBits(wifi_event_group, WIFI_AP_CONNECTED_BIT, pdFALSE, pdFALSE, pdMS_TO_TICKS(AP_CONNECTION_TIMEOUT)) & WIFI_AP_CONNECTED_BIT) { xEventGroupWaitBits(wifi_event_group, WIFI_AP_DISCONNECTED_BIT, pdFALSE, pdFALSE, portMAX_DELAY); } else { if (xEventGroupGetBits(wifi_event_group) & WIFI_AP_MODE_BIT) { //wifi_ap_stop(); } } } else if (mode_bits & WIFI_STA_MODE_BIT) { xEventGroupWaitBits(wifi_event_group, WIFI_STA_DISCONNECTED_BIT, pdFALSE, pdFALSE, portMAX_DELAY); } } } // // Botão e tratamento // static void handle_button_press(void) { ESP_LOGI(TAG, "Ativando modo AP"); if (!(xEventGroupGetBits(wifi_event_group) & WIFI_AP_MODE_BIT)) { wifi_ap_start(); } } static void user_input_task_func(void *param) { uint32_t notification; while (1) { if (xTaskNotifyWait(0x00, 0xFF, ¬ification, portMAX_DELAY)) { if (notification & PRESS_BIT) { press_tick = xTaskGetTickCount(); pressed = true; ESP_LOGI(TAG, "Botão pressionado"); } if (notification & RELEASED_BIT && pressed) { pressed = false; ESP_LOGI(TAG, "Botão liberado"); handle_button_press(); } } } } static void IRAM_ATTR button_isr_handler(void *arg) { BaseType_t higher_task_woken = pdFALSE; TickType_t now = xTaskGetTickCountFromISR(); if (now - last_interrupt_tick < pdMS_TO_TICKS(DEBOUNCE_TIME_MS)) return; last_interrupt_tick = now; if (!gpio_get_level(board_config.button_wifi_gpio)) { xTaskNotifyFromISR(user_input_task, RELEASED_BIT, eSetBits, &higher_task_woken); } else { xTaskNotifyFromISR(user_input_task, PRESS_BIT, eSetBits, &higher_task_woken); } if (higher_task_woken) { portYIELD_FROM_ISR(); } } static void button_init(void) { gpio_config_t conf = { .pin_bit_mask = BIT64(board_config.button_wifi_gpio), .mode = GPIO_MODE_INPUT, .pull_down_en = GPIO_PULLDOWN_DISABLE, .pull_up_en = GPIO_PULLUP_ENABLE, .intr_type = GPIO_INTR_ANYEDGE }; ESP_ERROR_CHECK(gpio_config(&conf)); ESP_ERROR_CHECK(gpio_isr_handler_add(board_config.button_wifi_gpio, button_isr_handler, NULL)); } // // Inicialização dos módulos do sistema // static void init_modules(void) { peripherals_init(); //api_init(); ESP_ERROR_CHECK(rest_server_init("/data")); protocols_init(); evse_manager_init(); evse_init(); // Cria a task para FSM button_init(); auth_init(); loadbalancer_init(); meter_manager_grid_init(); meter_manager_grid_start(); //meter_manager_evse_init(); // Outros módulos (descomente conforme necessário) // meter_init(); // ocpp_start(); // orno_modbus_start(); // currentshaper_start(); // initWiegand(); // meter_zigbee_start(); // master_sync_start(); // slave_sync_start(); } // // Função principal do firmware // void app_main(void) { logger_init(); esp_log_set_vprintf(logger_vprintf); esp_reset_reason_t reason = esp_reset_reason(); ESP_LOGI(TAG, "Reset reason: %d", reason); esp_err_t ret = nvs_flash_init(); if (ret == ESP_ERR_NVS_NO_FREE_PAGES || ret == ESP_ERR_NVS_NEW_VERSION_FOUND) { ESP_LOGW(TAG, "Erasing NVS flash"); ESP_ERROR_CHECK(nvs_flash_erase()); ret = nvs_flash_init(); } ESP_ERROR_CHECK(ret); fs_init(); ESP_ERROR_CHECK(esp_netif_init()); ESP_ERROR_CHECK(esp_event_loop_create_default()); ESP_ERROR_CHECK(gpio_install_isr_service(0)); board_config_load(); wifi_ini(); //wifi_ap_start(); init_modules(); xTaskCreate(wifi_event_task_func, "wifi_event_task", 8 * 1024, NULL, 3, NULL); xTaskCreate(user_input_task_func, "user_input_task", 4 * 1024, NULL, 3, &user_input_task); } // === Fim de: main/main.c === // === Início de: components/evse/evse_pilot.c === #include #include #include #include #include #include "driver/ledc.h" #include "esp_err.h" #include "esp_log.h" #include "esp_rom_sys.h" #include "evse_pilot.h" #include "adc.h" #include "board_config.h" #define PILOT_PWM_TIMER LEDC_TIMER_0 #define PILOT_PWM_CHANNEL LEDC_CHANNEL_0 #define PILOT_PWM_SPEED_MODE LEDC_LOW_SPEED_MODE #define PILOT_PWM_DUTY_RES LEDC_TIMER_10_BIT #define PILOT_PWM_MAX_DUTY 1023 #define NUM_PILOT_SAMPLES 100 #define MAX_SAMPLE_ATTEMPTS 1000 #define PILOT_EXTREME_PERCENT 10 // 10% superior e inferior static const char *TAG = "evse_pilot"; void pilot_init(void) { ledc_timer_config_t ledc_timer = { .speed_mode = PILOT_PWM_SPEED_MODE, .timer_num = PILOT_PWM_TIMER, .duty_resolution = PILOT_PWM_DUTY_RES, .freq_hz = 1000, .clk_cfg = LEDC_AUTO_CLK }; ESP_ERROR_CHECK(ledc_timer_config(&ledc_timer)); ledc_channel_config_t ledc_channel = { .speed_mode = PILOT_PWM_SPEED_MODE, .channel = PILOT_PWM_CHANNEL, .timer_sel = PILOT_PWM_TIMER, .intr_type = LEDC_INTR_DISABLE, .gpio_num = board_config.pilot_pwm_gpio, .duty = 0, .hpoint = 0 }; ESP_ERROR_CHECK(ledc_channel_config(&ledc_channel)); ESP_ERROR_CHECK(ledc_stop(PILOT_PWM_SPEED_MODE, PILOT_PWM_CHANNEL, 0)); ESP_ERROR_CHECK(ledc_fade_func_install(0)); adc_oneshot_chan_cfg_t config = { .bitwidth = ADC_BITWIDTH_DEFAULT, .atten = ADC_ATTEN_DB_12, }; ESP_ERROR_CHECK(adc_oneshot_config_channel(adc_handle, board_config.pilot_adc_channel, &config)); } void pilot_set_level(bool level) { ESP_LOGI(TAG, "Set level %d", level); ledc_stop(PILOT_PWM_SPEED_MODE, PILOT_PWM_CHANNEL, level ? 1 : 0); } void pilot_set_amps(uint16_t amps) { ESP_LOGI(TAG, "Set amps %d", amps); if (amps < 60 || amps > 800) { ESP_LOGE(TAG, "Invalid ampere value: %d A*10", amps); return; } uint32_t duty; if (amps <= 510) { duty = (PILOT_PWM_MAX_DUTY * amps) / 600; } else { duty = ((PILOT_PWM_MAX_DUTY * amps) / 2500) + (64 * (PILOT_PWM_MAX_DUTY / 100)); } if (duty > PILOT_PWM_MAX_DUTY) duty = PILOT_PWM_MAX_DUTY; ESP_LOGI(TAG, "Set amp %dA*10 -> duty %lu/%d", amps, duty, PILOT_PWM_MAX_DUTY); ledc_set_duty(PILOT_PWM_SPEED_MODE, PILOT_PWM_CHANNEL, duty); ledc_update_duty(PILOT_PWM_SPEED_MODE, PILOT_PWM_CHANNEL); } static int compare_int(const void *a, const void *b) { return (*(int *)a - *(int *)b); } static int select_low_median_qsort(int *src, int n, int percent) { int k = (n * percent) / 100; if (k == 0) k = 1; int *copy = alloca(n * sizeof(int)); memcpy(copy, src, n * sizeof(int)); qsort(copy, n, sizeof(int), compare_int); return copy[k / 2]; } static int select_high_median_qsort(int *src, int n, int percent) { int k = (n * percent) / 100; if (k == 0) k = 1; int *copy = alloca(n * sizeof(int)); memcpy(copy, src, n * sizeof(int)); qsort(copy, n, sizeof(int), compare_int); return copy[n - k + (k / 2)]; } void pilot_measure(pilot_voltage_t *up_voltage, bool *down_voltage_n12) { ESP_LOGD(TAG, "pilot_measure"); int samples[NUM_PILOT_SAMPLES]; int collected = 0, attempts = 0; int sample; while (collected < NUM_PILOT_SAMPLES && attempts < MAX_SAMPLE_ATTEMPTS) { if (adc_oneshot_read(adc_handle, board_config.pilot_adc_channel, &sample) == ESP_OK) { samples[collected++] = sample; esp_rom_delay_us(10); } else { esp_rom_delay_us(100); attempts++; } } if (collected < NUM_PILOT_SAMPLES) { ESP_LOGW(TAG, "Timeout on sample read (%d/%d)", collected, NUM_PILOT_SAMPLES); *up_voltage = PILOT_VOLTAGE_1; *down_voltage_n12 = false; return; } int high_raw = select_high_median_qsort(samples, collected, PILOT_EXTREME_PERCENT); int low_raw = select_low_median_qsort(samples, collected, PILOT_EXTREME_PERCENT); ESP_LOGD(TAG, "Final: high_raw=%d, low_raw=%d", high_raw, low_raw); int high_mv = 0; int low_mv = 0; if (adc_cali_raw_to_voltage(adc_cali_handle, high_raw, &high_mv) != ESP_OK || adc_cali_raw_to_voltage(adc_cali_handle, low_raw, &low_mv) != ESP_OK) { ESP_LOGW(TAG, "ADC calibration failed"); *up_voltage = PILOT_VOLTAGE_1; *down_voltage_n12 = false; return; } if (high_mv >= board_config.pilot_down_threshold_12) *up_voltage = PILOT_VOLTAGE_12; else if (high_mv >= board_config.pilot_down_threshold_9) *up_voltage = PILOT_VOLTAGE_9; else if (high_mv >= board_config.pilot_down_threshold_6) *up_voltage = PILOT_VOLTAGE_6; else if (high_mv >= board_config.pilot_down_threshold_3) *up_voltage = PILOT_VOLTAGE_3; else *up_voltage = PILOT_VOLTAGE_1; *down_voltage_n12 = (low_mv <= board_config.pilot_down_threshold_n12); ESP_LOGD(TAG, "Final: up_voltage=%d, down_voltage_n12=%d", *up_voltage, *down_voltage_n12); } // === Fim de: components/evse/evse_pilot.c === // === Início de: components/evse/evse_hardware.c === #include "evse_hardware.h" #include "evse_pilot.h" #include "ac_relay.h" #include "socket_lock.h" #include "proximity.h" static const char *TAG = "evse_hardware"; void evse_hardware_init(void) { pilot_init(); pilot_set_level(true); // Sinal piloto em 12V (inicial) ac_relay_set_state(false); // Relé desligado //socket_lock_set_locked(false); // Destrava o conector } void evse_hardware_tick(void) { // Tick para atualizações de hardware com polling, se necessário } bool evse_hardware_is_pilot_high(void) { return pilot_get_state(); // true se sinal piloto estiver em nível alto } bool evse_hardware_is_vehicle_connected(void) { // Verifica se o veículo está conectado pelo resistor do pino PP return proximity_get_max_current() > 0; } bool evse_hardware_is_energy_detected(void) { return false; } void evse_hardware_relay_on(void) { ac_relay_set_state(true); } void evse_hardware_relay_off(void) { ac_relay_set_state(false); } bool evse_hardware_relay_status(void) { return ac_relay_get_state(); } void evse_hardware_lock(void) { socket_lock_set_locked(true); } void evse_hardware_unlock(void) { socket_lock_set_locked(false); } bool evse_hardware_is_locked(void) { return socket_lock_is_locked_state(); } // === Fim de: components/evse/evse_hardware.c === // === Início de: components/evse/evse_state.c === #include "evse_state.h" #include "evse_events.h" #include "freertos/FreeRTOS.h" #include "freertos/portmacro.h" #include "esp_log.h" static evse_state_t current_state = EVSE_STATE_A; static bool is_authorized = false; // Proteção básica para variáveis globais em sistemas concorrentes static portMUX_TYPE state_mux = portMUX_INITIALIZER_UNLOCKED; static evse_state_event_t map_state_to_event(evse_state_t s) { switch (s) { case EVSE_STATE_A: return EVSE_STATE_EVENT_IDLE; case EVSE_STATE_B1: return EVSE_STATE_EVENT_WAITING; case EVSE_STATE_B2: case EVSE_STATE_C1: case EVSE_STATE_C2: return EVSE_STATE_EVENT_CHARGING; case EVSE_STATE_E: case EVSE_STATE_F: return EVSE_STATE_EVENT_FAULT; default: return EVSE_STATE_EVENT_IDLE; } } void evse_set_state(evse_state_t state) { bool changed = false; evse_state_t previous_state; portENTER_CRITICAL(&state_mux); previous_state = current_state; if (state != current_state) { current_state = state; changed = true; } portEXIT_CRITICAL(&state_mux); if (changed) { ESP_LOGI("EVSE_STATE", "Estado alterado de %s para %s", evse_state_to_str(previous_state), evse_state_to_str(state)); evse_state_event_data_t evt = { .state = map_state_to_event(state) }; esp_event_post(EVSE_EVENTS, EVSE_EVENT_STATE_CHANGED, &evt, sizeof(evt), portMAX_DELAY); } } evse_state_t evse_get_state(void) { portENTER_CRITICAL(&state_mux); evse_state_t s = current_state; portEXIT_CRITICAL(&state_mux); return s; } const char* evse_state_to_str(evse_state_t state) { switch (state) { case EVSE_STATE_A: return "A - EV Not Connected (12V)"; case EVSE_STATE_B1: return "B1 - EV Connected (9V, Not Authorized)"; case EVSE_STATE_B2: return "B2 - EV Connected (9V, Authorized and Ready)"; case EVSE_STATE_C1: return "C1 - Charging Requested (6V, Relay Off)"; case EVSE_STATE_C2: return "C2 - Charging Active (6V, Relay On)"; case EVSE_STATE_D1: return "D1 - Ventilation Required (3V, Relay Off)"; case EVSE_STATE_D2: return "D2 - Ventilation Active (3V, Relay On)"; case EVSE_STATE_E: return "E - Error: Control Pilot Shorted to Ground (0V)"; case EVSE_STATE_F: return "F - Fault: EVSE Unavailable or No Pilot Signal"; default: return "Unknown State"; } } void evse_state_init(void) { portENTER_CRITICAL(&state_mux); current_state = EVSE_STATE_A; is_authorized = true; portEXIT_CRITICAL(&state_mux); ESP_LOGI("EVSE_STATE", "Inicializado em estado: %s", evse_state_to_str(current_state)); evse_state_event_data_t evt = { .state = map_state_to_event(current_state) }; esp_event_post(EVSE_EVENTS, EVSE_EVENT_INIT, &evt, sizeof(evt), portMAX_DELAY); } void evse_state_tick(void) { // Tick do estado (placeholder) } bool evse_state_is_charging(evse_state_t state) { return state == EVSE_STATE_C1 || state == EVSE_STATE_C2; } bool evse_state_is_plugged(evse_state_t state) { return state == EVSE_STATE_B1 || state == EVSE_STATE_B2 || state == EVSE_STATE_C1 || state == EVSE_STATE_C2 || state == EVSE_STATE_D1 || state == EVSE_STATE_D2; } bool evse_state_is_session(evse_state_t state) { return state == EVSE_STATE_B2 || state == EVSE_STATE_C1 || state == EVSE_STATE_C2; } void evse_state_set_authorized(bool authorized) { portENTER_CRITICAL(&state_mux); is_authorized = authorized; portEXIT_CRITICAL(&state_mux); } bool evse_state_get_authorized(void) { portENTER_CRITICAL(&state_mux); bool result = is_authorized; portEXIT_CRITICAL(&state_mux); return result; } // === Fim de: components/evse/evse_state.c === // === Início de: components/evse/evse_fsm.c === // evse_fsm.c - Máquina de Estados EVSE com controle centralizado #include "evse_fsm.h" #include "evse_api.h" #include "evse_pilot.h" #include "evse_config.h" #include "esp_log.h" #include "ac_relay.h" #include "board_config.h" #include "socket_lock.h" #include "proximity.h" #include "rcm.h" #include "evse_state.h" static const char *TAG = "evse_fsm"; #ifndef MIN #define MIN(a, b) ((a) < (b) ? (a) : (b)) #endif static bool c1_d1_waiting = false; static TickType_t c1_d1_relay_to = 0; void evse_fsm_reset(void) { evse_set_state(EVSE_STATE_A); c1_d1_waiting = false; c1_d1_relay_to = 0; } static void update_outputs(evse_state_t state) { const uint16_t current = evse_get_runtime_charging_current(); uint8_t cable_max_current = evse_get_max_charging_current(); const bool socket_outlet = evse_get_socket_outlet(); if (socket_outlet) { cable_max_current = proximity_get_max_current(); } switch (state) { case EVSE_STATE_A: case EVSE_STATE_E: case EVSE_STATE_F: ac_relay_set_state(false); pilot_set_level(state == EVSE_STATE_A); if (board_config.socket_lock && socket_outlet) { socket_lock_set_locked(false); } break; case EVSE_STATE_B1: pilot_set_level(true); ac_relay_set_state(false); if (board_config.socket_lock && socket_outlet) { socket_lock_set_locked(true); } if (rcm_test()) { ESP_LOGI(TAG, "RCM self test passed"); } else { ESP_LOGW(TAG, "RCM self test failed"); } break; case EVSE_STATE_B2: pilot_set_amps(MIN(current * 10, cable_max_current * 10)); ac_relay_set_state(false); break; case EVSE_STATE_C1: case EVSE_STATE_D1: pilot_set_level(true); c1_d1_waiting = true; c1_d1_relay_to = xTaskGetTickCount() + pdMS_TO_TICKS(6000); break; case EVSE_STATE_C2: case EVSE_STATE_D2: pilot_set_amps(MIN(current * 10, cable_max_current * 10)); ac_relay_set_state(true); break; } } void evse_fsm_process(pilot_voltage_t pilot_voltage, bool authorized, bool available, bool enabled) { TickType_t now = xTaskGetTickCount(); evse_state_t prev = evse_get_state(); evse_state_t curr = prev; switch (curr) { case EVSE_STATE_A: if (!available) { evse_set_state(EVSE_STATE_F); } else if (pilot_voltage == PILOT_VOLTAGE_9) { evse_set_state(EVSE_STATE_B1); } break; case EVSE_STATE_B1: case EVSE_STATE_B2: if (!available) { evse_set_state(EVSE_STATE_F); break; } switch (pilot_voltage) { case PILOT_VOLTAGE_12: evse_set_state(EVSE_STATE_A); break; case PILOT_VOLTAGE_9: evse_set_state((authorized && enabled) ? EVSE_STATE_B2 : EVSE_STATE_B1); break; case PILOT_VOLTAGE_6: evse_set_state((authorized && enabled) ? EVSE_STATE_C2 : EVSE_STATE_C1); break; default: break; } break; case EVSE_STATE_C1: case EVSE_STATE_D1: if (c1_d1_waiting && now >= c1_d1_relay_to) { ac_relay_set_state(false); c1_d1_waiting = false; if (!available) { evse_set_state(EVSE_STATE_F); break; } } __attribute__((fallthrough)); // Evita warning de fallthrough implícito case EVSE_STATE_C2: case EVSE_STATE_D2: if (!enabled || !available) { evse_set_state((curr == EVSE_STATE_D2 || curr == EVSE_STATE_D1) ? EVSE_STATE_D1 : EVSE_STATE_C1); break; } switch (pilot_voltage) { case PILOT_VOLTAGE_6: evse_set_state((authorized && enabled) ? EVSE_STATE_C2 : EVSE_STATE_C1); break; case PILOT_VOLTAGE_3: evse_set_state((authorized && enabled) ? EVSE_STATE_D2 : EVSE_STATE_D1); break; case PILOT_VOLTAGE_9: evse_set_state((authorized && enabled) ? EVSE_STATE_B2 : EVSE_STATE_B1); break; case PILOT_VOLTAGE_12: evse_set_state(EVSE_STATE_A); break; default: break; } break; case EVSE_STATE_E: break; // Sem transições a partir de E case EVSE_STATE_F: if (available) { evse_set_state(EVSE_STATE_A); } break; } evse_state_t next = evse_get_state(); if (next != prev) { ESP_LOGI(TAG, "State changed: %s -> %s", evse_state_to_str(prev), evse_state_to_str(next)); update_outputs(next); } } // === Fim de: components/evse/evse_fsm.c === // === Início de: components/evse/evse_error.c === #include "evse_error.h" #include "evse_config.h" #include "freertos/FreeRTOS.h" #include "freertos/task.h" #include "esp_log.h" #include "ntc_sensor.h" static const char *TAG = "evse_error"; static uint32_t error_bits = 0; static TickType_t auto_clear_timeout = 0; static bool error_cleared = false; void evse_error_init(void) { // Inicialização do sistema de erros } void evse_error_check(pilot_voltage_t pilot_voltage, bool is_n12v) { ESP_LOGD(TAG, "Verificando erro: pilot_voltage = %d, is_n12v = %s", pilot_voltage, is_n12v ? "true" : "false"); // Falha elétrica geral no pilot if (pilot_voltage == PILOT_VOLTAGE_1) { if (!(error_bits & EVSE_ERR_PILOT_FAULT_BIT)) { // Verifica se o erro já foi registrado evse_error_set(EVSE_ERR_PILOT_FAULT_BIT); ESP_LOGW(TAG, "Erro: pilot abaixo de 2V (falha)"); } } // Falta de -12V durante PWM (C ou D) if ((pilot_voltage == PILOT_VOLTAGE_6 || pilot_voltage == PILOT_VOLTAGE_3) && !is_n12v) { if (!(error_bits & EVSE_ERR_DIODE_SHORT_BIT)) { // Verifica se o erro já foi registrado evse_error_set(EVSE_ERR_DIODE_SHORT_BIT); ESP_LOGW(TAG, "Erro: ausência de -12V no PWM (sem diodo)"); ESP_LOGW(TAG, "Verificando erro: pilot_voltage = %d, is_n12v = %s", pilot_voltage, is_n12v ? "true" : "false"); } } } void evse_temperature_check(void) { float temp_c = ntc_temp_sensor(); // leitura atual (última medida válida) uint8_t threshold = evse_get_temp_threshold(); // padrão 60°C, configurável // Log informativo com os valores ESP_LOGD(TAG, "Verificando temperatura: atual = %.2f °C, limite = %d °C", temp_c, threshold); // Se a temperatura parecer inválida, aplica erro de sensor if (temp_c < -40.0f || temp_c > 150.0f) { if (!(error_bits & EVSE_ERR_TEMPERATURE_FAULT_BIT)) { // Verifica se o erro já foi registrado evse_error_set(EVSE_ERR_TEMPERATURE_FAULT_BIT); ESP_LOGW(TAG, "Sensor NTC falhou ou está desconectado"); } return; } evse_error_clear(EVSE_ERR_TEMPERATURE_FAULT_BIT); // leitura válida if (temp_c >= threshold) { if (!(error_bits & EVSE_ERR_TEMPERATURE_HIGH_BIT)) { // Verifica se o erro já foi registrado evse_error_set(EVSE_ERR_TEMPERATURE_HIGH_BIT); ESP_LOGW(TAG, "Temperatura acima do limite: %.2f °C ≥ %d °C", temp_c, threshold); } } else { evse_error_clear(EVSE_ERR_TEMPERATURE_HIGH_BIT); } } uint32_t evse_get_error(void) { return error_bits; } bool evse_is_error_cleared(void) { return error_cleared; } void evse_mark_error_cleared(void) { error_cleared = false; } // Já existentes void evse_error_set(uint32_t bitmask) { error_bits |= bitmask; if (bitmask & EVSE_ERR_AUTO_CLEAR_BITS) { auto_clear_timeout = xTaskGetTickCount() + pdMS_TO_TICKS(60000); // 60s } } void evse_error_clear(uint32_t bitmask) { bool had_error = error_bits != 0; error_bits &= ~bitmask; if (had_error && error_bits == 0) { error_cleared = true; } } void evse_error_tick(void) { if ((error_bits & EVSE_ERR_AUTO_CLEAR_BITS) && xTaskGetTickCount() >= auto_clear_timeout) { evse_error_clear(EVSE_ERR_AUTO_CLEAR_BITS); auto_clear_timeout = 0; } } bool evse_error_is_active(void) { return error_bits != 0; } uint32_t evse_error_get_bits(void) { return error_bits; } void evse_error_reset_flag(void) { error_cleared = false; } bool evse_error_cleared_flag(void) { return error_cleared; } // === Fim de: components/evse/evse_error.c === // === Início de: components/evse/evse_core.c === // evse_core.c - Função principal de controle do EVSE #include "evse_fsm.h" #include "evse_error.h" #include "evse_limits.h" #include "evse_config.h" #include "evse_api.h" #include "evse_pilot.h" #include "freertos/FreeRTOS.h" #include "freertos/semphr.h" #include "esp_log.h" static const char *TAG = "evse_core"; static SemaphoreHandle_t mutex; static evse_state_t last_state = EVSE_STATE_A; static void evse_core_task(void *arg); void evse_init(void) { ESP_LOGI(TAG, "EVSE Init"); mutex = xSemaphoreCreateMutex(); evse_check_defaults(); evse_fsm_reset(); pilot_set_level(true); // Estado inicial do piloto xTaskCreate(evse_core_task, "evse_core_task", 4096, NULL, 5, NULL); } void evse_process(void) { xSemaphoreTake(mutex, portMAX_DELAY); pilot_voltage_t pilot_voltage; bool is_n12v = false; pilot_measure(&pilot_voltage, &is_n12v); ESP_LOGD(TAG, "Pilot: %d, -12V: %s", pilot_voltage, is_n12v ? "yes" : "no"); if (evse_get_error() == 0 && !evse_is_error_cleared()) { evse_error_check(pilot_voltage, is_n12v); evse_fsm_process( pilot_voltage, evse_state_get_authorized(), evse_config_is_available(), evse_config_is_enabled() ); evse_limits_check(evse_get_state()); evse_state_t current = evse_get_state(); if (current != last_state) { ESP_LOGI(TAG, "State changed: %s → %s", evse_state_to_str(last_state), evse_state_to_str(current)); last_state = current; } evse_mark_error_cleared(); } xSemaphoreGive(mutex); } // ================================ // Interface pública // ================================ bool evse_is_enabled(void) { return evse_config_is_enabled(); } void evse_set_enabled(bool value) { ESP_LOGI(TAG, "Set enabled %d", value); evse_config_set_enabled(value); } bool evse_is_available(void) { return evse_config_is_available(); } void evse_set_available(bool value) { ESP_LOGI(TAG, "Set available %d", value); evse_config_set_available(value); } // ================================ // Tarefa principal // ================================ static void evse_core_task(void *arg) { while (true) { evse_process(); vTaskDelay(pdMS_TO_TICKS(100)); } } // === Fim de: components/evse/evse_core.c === // === Início de: components/evse/evse_limits.c === #include "evse_limits.h" #include #include // ======================== // Estado interno // ======================== static bool limit_reached = false; static uint32_t consumption_limit = 0; static uint32_t charging_time_limit = 0; static uint16_t under_power_limit = 0; static uint32_t default_consumption_limit = 0; static uint32_t default_charging_time_limit = 0; static uint16_t default_under_power_limit = 0; // ======================== // Estado de controle // ======================== void evse_set_limit_reached(uint8_t value) { limit_reached = (value != 0); } bool evse_is_limit_reached(void) { return limit_reached; } // ======================== // Limites em tempo de execução // ======================== uint32_t evse_get_consumption_limit(void) { return consumption_limit; } void evse_set_consumption_limit(uint32_t value) { consumption_limit = value; } uint32_t evse_get_charging_time_limit(void) { return charging_time_limit; } void evse_set_charging_time_limit(uint32_t value) { charging_time_limit = value; } uint16_t evse_get_under_power_limit(void) { return under_power_limit; } void evse_set_under_power_limit(uint16_t value) { under_power_limit = value; } // ======================== // Limites padrão (persistentes) // ======================== uint32_t evse_get_default_consumption_limit(void) { return default_consumption_limit; } void evse_set_default_consumption_limit(uint32_t value) { default_consumption_limit = value; } uint32_t evse_get_default_charging_time_limit(void) { return default_charging_time_limit; } void evse_set_default_charging_time_limit(uint32_t value) { default_charging_time_limit = value; } uint16_t evse_get_default_under_power_limit(void) { return default_under_power_limit; } void evse_set_default_under_power_limit(uint16_t value) { default_under_power_limit = value; } // ======================== // Lógica de verificação de limites // ======================== void evse_limits_check(evse_state_t state) { // Se algum limite estiver ativo, verifique o estado if ((consumption_limit > 0 || charging_time_limit > 0 || under_power_limit > 0) && evse_state_is_charging(state)) { // (Lógica real a ser aplicada aqui, ex: medição de consumo, tempo ou potência) evse_set_limit_reached(1); } } // === Fim de: components/evse/evse_limits.c === // === Início de: components/evse/evse_config.c === #include // For PRI macros #include "evse_config.h" #include "board_config.h" #include "evse_limits.h" #include "esp_log.h" #include "nvs.h" static const char *TAG = "evse_config"; static nvs_handle_t nvs; // ======================== // Configurable parameters // ======================== static uint8_t max_charging_current = MAX_CHARGING_CURRENT_LIMIT; static uint16_t charging_current; // Persisted (NVS) static uint16_t charging_current_runtime = 0; // Runtime only static bool socket_outlet; static bool rcm; static uint8_t temp_threshold = 60; static bool require_auth; // ======================== // Initialization // ======================== esp_err_t evse_config_init(void) { ESP_LOGD(TAG, "Initializing NVS configuration..."); return nvs_open("evse", NVS_READWRITE, &nvs); } void evse_check_defaults(void) { esp_err_t err; uint8_t u8; uint16_t u16; uint32_t u32; bool needs_commit = false; ESP_LOGD(TAG, "Checking default parameters..."); // Max charging current err = nvs_get_u8(nvs, "max_chrg_curr", &u8); if (err != ESP_OK || u8 < MIN_CHARGING_CURRENT_LIMIT || u8 > MAX_CHARGING_CURRENT_LIMIT) { max_charging_current = MAX_CHARGING_CURRENT_LIMIT; nvs_set_u8(nvs, "max_chrg_curr", max_charging_current); needs_commit = true; ESP_LOGW(TAG, "Invalid or missing max_chrg_curr, resetting to %d", max_charging_current); } else { max_charging_current = u8; } // Charging current (default, persisted) err = nvs_get_u16(nvs, "def_chrg_curr", &u16); if (err != ESP_OK || u16 < (MIN_CHARGING_CURRENT_LIMIT * 10) || u16 > (max_charging_current * 10)) { charging_current = max_charging_current * 10; nvs_set_u16(nvs, "def_chrg_curr", charging_current); needs_commit = true; ESP_LOGW(TAG, "Invalid or missing def_chrg_curr, resetting to %d", charging_current); } else { charging_current = u16; } // Runtime charging current initialized from persisted default charging_current_runtime = charging_current; ESP_LOGD(TAG, "Runtime charging current initialized to: %d", charging_current_runtime); // Auth required err = nvs_get_u8(nvs, "require_auth", &u8); require_auth = (err == ESP_OK && u8 <= 1) ? u8 : false; if (err != ESP_OK) { nvs_set_u8(nvs, "require_auth", require_auth); needs_commit = true; } // Socket outlet err = nvs_get_u8(nvs, "socket_outlet", &u8); socket_outlet = (err == ESP_OK && u8) && board_config.proximity; if (err != ESP_OK) { nvs_set_u8(nvs, "socket_outlet", socket_outlet); needs_commit = true; } // RCM err = nvs_get_u8(nvs, "rcm", &u8); rcm = (err == ESP_OK && u8) && board_config.rcm; if (err != ESP_OK) { nvs_set_u8(nvs, "rcm", rcm); needs_commit = true; } // Temp threshold err = nvs_get_u8(nvs, "temp_threshold", &u8); temp_threshold = (err == ESP_OK && u8 >= 40 && u8 <= 80) ? u8 : 60; if (err != ESP_OK) { nvs_set_u8(nvs, "temp_threshold", temp_threshold); needs_commit = true; } // Optional limits if (nvs_get_u32(nvs, "def_cons_lim", &u32) == ESP_OK) evse_set_consumption_limit(u32); if (nvs_get_u32(nvs, "def_ch_time_lim", &u32) == ESP_OK) evse_set_charging_time_limit(u32); if (nvs_get_u16(nvs, "def_un_pwr_lim", &u16) == ESP_OK) evse_set_under_power_limit(u16); // Save to NVS if needed if (needs_commit) { err = nvs_commit(nvs); if (err == ESP_OK) { ESP_LOGD(TAG, "Configuration committed to NVS."); } else { ESP_LOGE(TAG, "Failed to commit configuration to NVS: %s", esp_err_to_name(err)); } } } // ======================== // Charging current getters/setters // ======================== uint8_t evse_get_max_charging_current(void) { return max_charging_current; } esp_err_t evse_set_max_charging_current(uint8_t value) { if (value < MIN_CHARGING_CURRENT_LIMIT || value > MAX_CHARGING_CURRENT_LIMIT) return ESP_ERR_INVALID_ARG; max_charging_current = value; nvs_set_u8(nvs, "max_chrg_curr", value); return nvs_commit(nvs); } uint16_t evse_get_charging_current(void) { return charging_current; } esp_err_t evse_set_charging_current(uint16_t value) { if (value < (MIN_CHARGING_CURRENT_LIMIT * 10) || value > (max_charging_current * 10)) return ESP_ERR_INVALID_ARG; charging_current = value; nvs_set_u16(nvs, "def_chrg_curr", value); return nvs_commit(nvs); } uint16_t evse_get_default_charging_current(void) { uint16_t value; if (nvs_get_u16(nvs, "def_chrg_curr", &value) == ESP_OK) return value; return charging_current; } esp_err_t evse_set_default_charging_current(uint16_t value) { if (value < (MIN_CHARGING_CURRENT_LIMIT * 10) || value > (max_charging_current * 10)) return ESP_ERR_INVALID_ARG; nvs_set_u16(nvs, "def_chrg_curr", value); return nvs_commit(nvs); } // ======================== // Runtime current (not saved) // ======================== void evse_set_runtime_charging_current(uint16_t value) { if (value < (MIN_CHARGING_CURRENT_LIMIT) || value > (max_charging_current)) { ESP_LOGW(TAG, "Rejected runtime charging current (out of bounds): %d", value); return; } charging_current_runtime = value; ESP_LOGD(TAG, "Runtime charging current updated: %d", charging_current_runtime); } uint16_t evse_get_runtime_charging_current(void) { return charging_current_runtime; } // ======================== // Socket outlet // ======================== bool evse_get_socket_outlet(void) { return socket_outlet; } esp_err_t evse_set_socket_outlet(bool value) { if (value && !board_config.proximity) return ESP_ERR_INVALID_ARG; socket_outlet = value; nvs_set_u8(nvs, "socket_outlet", value); return nvs_commit(nvs); } // ======================== // RCM // ======================== bool evse_is_rcm(void) { return rcm; } esp_err_t evse_set_rcm(bool value) { if (value && !board_config.rcm) return ESP_ERR_INVALID_ARG; rcm = value; nvs_set_u8(nvs, "rcm", value); return nvs_commit(nvs); } // ======================== // Temperature // ======================== uint8_t evse_get_temp_threshold(void) { return temp_threshold; } esp_err_t evse_set_temp_threshold(uint8_t value) { if (value < 40 || value > 80) return ESP_ERR_INVALID_ARG; temp_threshold = value; nvs_set_u8(nvs, "temp_threshold", value); return nvs_commit(nvs); } // ======================== // Authentication // ======================== bool evse_is_require_auth(void) { return require_auth; } void evse_set_require_auth(bool value) { require_auth = value; nvs_set_u8(nvs, "require_auth", value); nvs_commit(nvs); } // ======================== // Availability // ======================== static bool is_available = true; bool evse_config_is_available(void) { return is_available; } void evse_config_set_available(bool available) { is_available = available; } // ======================== // Enable/Disable // ======================== static bool is_enabled = true; bool evse_config_is_enabled(void) { return is_enabled; } void evse_config_set_enabled(bool enabled) { is_enabled = enabled; } // === Fim de: components/evse/evse_config.c === // === Início de: components/evse/evse_manager.c === #include "evse_manager.h" #include "evse_state.h" #include "evse_error.h" #include "evse_hardware.h" #include "evse_config.h" #include "evse_api.h" #include "freertos/FreeRTOS.h" #include "freertos/task.h" #include "freertos/semphr.h" #include "freertos/queue.h" #include "esp_log.h" #include #include "auth_events.h" #include "loadbalancer_events.h" #include "esp_event.h" static const char *TAG = "EVSE_Manager"; static SemaphoreHandle_t evse_mutex; static bool auth_enabled = false; #define EVSE_MANAGER_TICK_PERIOD_MS 1000 // 1 segundo // ===== Task de ciclo principal ===== static void evse_manager_task(void *arg) { while (true) { evse_manager_tick(); vTaskDelay(pdMS_TO_TICKS(EVSE_MANAGER_TICK_PERIOD_MS)); } } // ===== Tratador de eventos de autenticação ===== static void on_auth_event(void* arg, esp_event_base_t base, int32_t id, void* data) { if (base != AUTH_EVENTS || data == NULL) return; switch (id) { case AUTH_EVENT_TAG_PROCESSED: { auth_tag_event_data_t *evt = (auth_tag_event_data_t*)data; ESP_LOGI("EVSE", "Tag: %s | Autorizada: %s", evt->tag, evt->authorized ? "SIM" : "NÃO"); evse_state_set_authorized(evt->authorized); break; } case AUTH_EVENT_ENABLED_CHANGED: case AUTH_EVENT_INIT: { auth_enabled_event_data_t *evt = (auth_enabled_event_data_t*)data; auth_enabled = evt->enabled; ESP_LOGI("EVSE", "Auth %s (%s)", id == AUTH_EVENT_ENABLED_CHANGED ? "ficou" : "init", evt->enabled ? "ATIVO" : "INATIVO"); if (!auth_enabled) { evse_state_set_authorized(true); ESP_LOGI("EVSE", "Autenticação desativada → autorização forçada."); } else { evse_state_set_authorized(false); ESP_LOGI("EVSE", "Autenticação ativada → aguardando autorização por tag."); } break; } } } // ===== Tratador de eventos de loadbalancer ===== static void on_loadbalancer_event(void* handler_arg, esp_event_base_t event_base, int32_t event_id, void* event_data) { if (event_id == LOADBALANCER_EVENT_INIT || event_id == LOADBALANCER_EVENT_STATE_CHANGED) { const loadbalancer_state_event_t* evt = (const loadbalancer_state_event_t*) event_data; ESP_LOGI(TAG, "Loadbalancer %s (ts: %lld)", evt->enabled ? "ENABLED" : "DISABLED", evt->timestamp_us); // Ações adicionais podem ser adicionadas aqui conforme necessário } else if (event_id == LOADBALANCER_EVENT_CHARGING_LIMIT_CHANGED) { const loadbalancer_charging_limit_event_t* evt = (const loadbalancer_charging_limit_event_t*) event_data; ESP_LOGD(TAG, "Novo limite de corrente: %.1f A (ts: %lld)", evt->limit, evt->timestamp_us); evse_set_runtime_charging_current((uint16_t)(evt->limit)); } } // ===== Inicialização ===== void evse_manager_init(void) { evse_mutex = xSemaphoreCreateMutex(); evse_config_init(); evse_error_init(); evse_hardware_init(); evse_state_init(); ESP_ERROR_CHECK(esp_event_handler_register(AUTH_EVENTS, ESP_EVENT_ANY_ID, &on_auth_event, NULL)); ESP_ERROR_CHECK(esp_event_handler_register(LOADBALANCER_EVENTS, ESP_EVENT_ANY_ID, &on_loadbalancer_event, NULL)); ESP_LOGI(TAG, "EVSE Manager inicializado."); xTaskCreate(evse_manager_task, "evse_manager_task", 4096, NULL, 5, NULL); } // ===== Main Tick ===== void evse_manager_tick(void) { xSemaphoreTake(evse_mutex, portMAX_DELAY); evse_hardware_tick(); evse_error_tick(); evse_state_tick(); evse_temperature_check(); if (auth_enabled) { // If the car is disconnected, revoke authorization if (evse_state_get_authorized() && evse_get_state() == EVSE_STATE_A) { ESP_LOGI(TAG, "Vehicle disconnected → revoking authorization."); evse_state_set_authorized(false); } } else { // If authentication is disabled, ensure authorization is always granted if (!evse_state_get_authorized()) { evse_state_set_authorized(true); ESP_LOGI(TAG, "Authentication disabled → forced authorization."); } } xSemaphoreGive(evse_mutex); } // ===== API pública ===== bool evse_manager_is_available(void) { return evse_config_is_available(); } void evse_manager_set_available(bool available) { evse_config_set_available(available); } void evse_manager_set_authorized(bool authorized) { evse_state_set_authorized(authorized); } bool evse_manager_is_charging(void) { return evse_state_is_charging(evse_get_state()); } void evse_manager_set_enabled(bool enabled) { evse_config_set_enabled(enabled); } bool evse_manager_is_enabled(void) { return evse_config_is_enabled(); } // === Fim de: components/evse/evse_manager.c === // === Início de: components/evse/evse_events.c === #include "evse_events.h" ESP_EVENT_DEFINE_BASE(EVSE_EVENTS); // === Fim de: components/evse/evse_events.c === // === Início de: components/evse/include/evse_pilot.h === #ifndef PILOT_H_ #define PILOT_H_ #ifdef __cplusplus extern "C" { #endif #include #include /** * @brief Níveis categóricos de tensão no sinal CP (Control Pilot) */ typedef enum { PILOT_VOLTAGE_12, ///< Estado A: +12V PILOT_VOLTAGE_9, ///< Estado B: +9V PILOT_VOLTAGE_6, ///< Estado C: +6V PILOT_VOLTAGE_3, ///< Estado D: +3V PILOT_VOLTAGE_1 ///< Estado E/F: abaixo de 3V } pilot_voltage_t; /** * @brief Inicializa o driver do sinal Pilot */ void pilot_init(void); /** * @brief Define o nível do Pilot: +12V ou -12V * * @param level true = +12V, false = -12V */ void pilot_set_level(bool level); /** * @brief Ativa o PWM do Pilot com corrente limitada * * @param amps Corrente em décimos de ampère (ex: 160 = 16A) */ void pilot_set_amps(uint16_t amps); /** * @brief Mede o nível de tensão do Pilot e detecta -12V * * @param up_voltage Valor categórico da tensão positiva * @param down_voltage_n12 true se o nível negativo atingir -12V */ void pilot_measure(pilot_voltage_t *up_voltage, bool *down_voltage_n12); /** * @brief Retorna o estado lógico atual do Pilot (nível alto = +12V) * * @return true se nível atual for +12V, false se for -12V */ bool pilot_get_state(void); /** * @brief Cache interno opcional dos níveis de tensão reais do Pilot */ typedef struct { uint16_t high_mv; ///< Pico positivo medido (mV) uint16_t low_mv; ///< Pico negativo medido (mV) } pilot_voltage_cache_t; #ifdef __cplusplus } #endif #endif /* PILOT_H_ */ // === Fim de: components/evse/include/evse_pilot.h === // === Início de: components/evse/include/evse_manager.h === #ifndef EVSE_MANAGER_H #define EVSE_MANAGER_H #pragma once #ifdef __cplusplus extern "C" { #endif #include #include #include #include /** * @brief Inicializa os módulos internos do EVSE (hardware, estado, erros, etc.) * e inicia a tarefa de supervisão periódica (tick). */ void evse_manager_init(void); /** * @brief Executa uma iteração do ciclo de controle do EVSE. * * Esta função é chamada automaticamente pela task periódica, * mas pode ser chamada manualmente em testes. */ void evse_manager_tick(void); /** * @brief Verifica se o EVSE está disponível para uso. * * Isso considera falhas críticas, disponibilidade configurada, etc. */ bool evse_manager_is_available(void); /** * @brief Define se o EVSE deve estar disponível (ex: via controle remoto). */ void evse_manager_set_available(bool available); /** * @brief Define se o EVSE está autorizado a carregar (ex: após autenticação). */ void evse_manager_set_authorized(bool authorized); /** * @brief Verifica se o EVSE está atualmente carregando. */ bool evse_manager_is_charging(void); /** * @brief Ativa ou desativa logicamente o EVSE (controla habilitação geral). */ void evse_manager_set_enabled(bool enabled); /** * @brief Verifica se o EVSE está ativado logicamente. */ bool evse_manager_is_enabled(void); #ifdef __cplusplus } #endif #endif // EVSE_MANAGER_H // === Fim de: components/evse/include/evse_manager.h === // === Início de: components/evse/include/evse_fsm.h === #ifndef EVSE_FSM_H #define EVSE_FSM_H #include #include #include "evse_api.h" #include "evse_pilot.h" #include "freertos/FreeRTOS.h" #ifdef __cplusplus extern "C" { #endif /** * @brief Reinicia a máquina de estados do EVSE para o estado inicial (A). */ void evse_fsm_reset(void); /** * @brief Processa uma leitura do sinal de piloto e atualiza a máquina de estados do EVSE. * * Esta função deve ser chamada periodicamente pelo núcleo de controle para * avaliar mudanças no estado do conector, disponibilidade do carregador e * autorização do usuário. * * @param pilot_voltage Leitura atual da tensão do sinal piloto. * @param authorized Indica se o carregamento foi autorizado. * @param available Indica se o carregador está disponível (ex: sem falhas). * @param enabled Indica se o carregador está habilitado via software. */ void evse_fsm_process(pilot_voltage_t pilot_voltage, bool authorized, bool available, bool enabled); #ifdef __cplusplus } #endif #endif // EVSE_FSM_H // === Fim de: components/evse/include/evse_fsm.h === // === Início de: components/evse/include/evse_hardware.h === #ifndef EVSE_HARDWARE_H #define EVSE_HARDWARE_H #ifdef __cplusplus extern "C" { #endif #include #include /** * @brief Inicializa todos os periféricos de hardware do EVSE (pilot, relé, trava, etc.) */ void evse_hardware_init(void); /** * @brief Executa atualizações periódicas no hardware (tick) */ void evse_hardware_tick(void); /** * @brief Verifica se o sinal piloto está em nível alto (12V) */ bool evse_hardware_is_pilot_high(void); /** * @brief Verifica se o veículo está fisicamente conectado via Proximity */ bool evse_hardware_is_vehicle_connected(void); /** * @brief Verifica se há consumo de energia (corrente detectada) */ bool evse_hardware_is_energy_detected(void); /** * @brief Liga o relé de fornecimento de energia */ void evse_hardware_relay_on(void); /** * @brief Desliga o relé de fornecimento de energia */ void evse_hardware_relay_off(void); /** * @brief Consulta o estado atual do relé * @return true se ligado, false se desligado */ bool evse_hardware_relay_status(void); /** * @brief Aciona a trava física do conector */ void evse_hardware_lock(void); /** * @brief Libera a trava física do conector */ void evse_hardware_unlock(void); /** * @brief Verifica se o conector está travado */ bool evse_hardware_is_locked(void); #ifdef __cplusplus } #endif #endif // EVSE_HARDWARE_H // === Fim de: components/evse/include/evse_hardware.h === // === Início de: components/evse/include/evse_config.h === #ifndef EVSE_CONFIG_H #define EVSE_CONFIG_H #include #include #include "esp_err.h" #ifdef __cplusplus extern "C" { #endif // ======================== // Limites Globais (Defines) // ======================== // Corrente máxima de carregamento (configurável pelo usuário) #define MIN_CHARGING_CURRENT_LIMIT 6 // A #define MAX_CHARGING_CURRENT_LIMIT 32 // A // Corrente via cabo (proximity) — se configurável #define MIN_CABLE_CURRENT_LIMIT 6 // A #define MAX_CABLE_CURRENT_LIMIT 63 // A // ======================== // Funções de Configuração // ======================== // Inicialização esp_err_t evse_config_init(void); void evse_check_defaults(void); // Corrente de carregamento uint8_t evse_get_max_charging_current(void); esp_err_t evse_set_max_charging_current(uint8_t value); uint16_t evse_get_charging_current(void); esp_err_t evse_set_charging_current(uint16_t value); uint16_t evse_get_default_charging_current(void); esp_err_t evse_set_default_charging_current(uint16_t value); // Configuração de socket outlet bool evse_get_socket_outlet(void); esp_err_t evse_set_socket_outlet(bool socket_outlet); void evse_set_runtime_charging_current(uint16_t value); uint16_t evse_get_runtime_charging_current(void); // RCM bool evse_is_rcm(void); esp_err_t evse_set_rcm(bool rcm); // Temperatura uint8_t evse_get_temp_threshold(void); esp_err_t evse_set_temp_threshold(uint8_t threshold); // Autenticação bool evse_is_require_auth(void); void evse_set_require_auth(bool require); // Disponibilidade bool evse_config_is_available(void); void evse_config_set_available(bool available); // Ativação/desativação do EVSE bool evse_config_is_enabled(void); void evse_config_set_enabled(bool enabled); #ifdef __cplusplus } #endif #endif // EVSE_CONFIG_H // === Fim de: components/evse/include/evse_config.h === // === Início de: components/evse/include/evse_state.h === #ifndef EVSE_STATE_H #define EVSE_STATE_H #include "evse_events.h" #include // Estado do EVSE (pilot signal) typedef enum { EVSE_STATE_A, EVSE_STATE_B1, EVSE_STATE_B2, EVSE_STATE_C1, EVSE_STATE_C2, EVSE_STATE_D1, EVSE_STATE_D2, EVSE_STATE_E, EVSE_STATE_F } evse_state_t; // Funções públicas necessárias void evse_state_init(void); void evse_state_tick(void); void evse_state_set_authorized(bool authorized); bool evse_state_get_authorized(void); evse_state_t evse_get_state(void); void evse_set_state(evse_state_t state); // Converte o estado para string const char* evse_state_to_str(evse_state_t state); // Retorna true se o estado representa sessão ativa bool evse_state_is_session(evse_state_t state); // Retorna true se o estado representa carregamento ativo bool evse_state_is_charging(evse_state_t state); // Retorna true se o estado representa veículo conectado bool evse_state_is_plugged(evse_state_t state); //evse_state_event_t map_state_to_event(evse_state_t state); #endif // EVSE_STATE_H // === Fim de: components/evse/include/evse_state.h === // === Início de: components/evse/include/evse_error.h === #ifndef EVSE_ERROR_H #define EVSE_ERROR_H #include #include #include "evse_pilot.h" #define EVSE_ERR_AUTO_CLEAR_BITS ( \ EVSE_ERR_DIODE_SHORT_BIT | \ EVSE_ERR_TEMPERATURE_HIGH_BIT | \ EVSE_ERR_RCM_TRIGGERED_BIT ) // Error bits #define EVSE_ERR_DIODE_SHORT_BIT (1 << 0) #define EVSE_ERR_LOCK_FAULT_BIT (1 << 1) #define EVSE_ERR_UNLOCK_FAULT_BIT (1 << 2) #define EVSE_ERR_RCM_SELFTEST_FAULT_BIT (1 << 3) #define EVSE_ERR_RCM_TRIGGERED_BIT (1 << 4) #define EVSE_ERR_TEMPERATURE_HIGH_BIT (1 << 5) #define EVSE_ERR_PILOT_FAULT_BIT (1 << 6) #define EVSE_ERR_TEMPERATURE_FAULT_BIT (1 << 7) // Inicialização do módulo de erros void evse_error_init(void); // Verificações e monitoramento void evse_error_check(pilot_voltage_t pilot_voltage, bool is_n12v); void evse_temperature_check(void); void evse_error_tick(void); // Leitura e controle de erros uint32_t evse_get_error(void); bool evse_is_error_cleared(void); void evse_mark_error_cleared(void); void evse_error_set(uint32_t bitmask); void evse_error_clear(uint32_t bitmask); bool evse_error_is_active(void); uint32_t evse_error_get_bits(void); void evse_error_reset_flag(void); bool evse_error_cleared_flag(void); #endif // EVSE_ERROR_H // === Fim de: components/evse/include/evse_error.h === // === Início de: components/evse/include/evse_limits.h === #ifndef EVSE_LIMITS_H #define EVSE_LIMITS_H #include #include #include "evse_state.h" #ifdef __cplusplus extern "C" { #endif /// Estado dos limites void evse_set_limit_reached(uint8_t value); bool evse_is_limit_reached(void); /// Verifica e aplica lógica de limites com base no estado atual do EVSE void evse_limits_check(evse_state_t state); /// Limites ativos (runtime) uint32_t evse_get_consumption_limit(void); void evse_set_consumption_limit(uint32_t value); uint32_t evse_get_charging_time_limit(void); void evse_set_charging_time_limit(uint32_t value); uint16_t evse_get_under_power_limit(void); void evse_set_under_power_limit(uint16_t value); /// Limites padrão (persistentes) uint32_t evse_get_default_consumption_limit(void); void evse_set_default_consumption_limit(uint32_t value); uint32_t evse_get_default_charging_time_limit(void); void evse_set_default_charging_time_limit(uint32_t value); uint16_t evse_get_default_under_power_limit(void); void evse_set_default_under_power_limit(uint16_t value); #ifdef __cplusplus } #endif #endif // EVSE_LIMITS_H // === Fim de: components/evse/include/evse_limits.h === // === Início de: components/evse/include/evse_events.h === #ifndef EVSE_EVENTS_H #define EVSE_EVENTS_H #pragma once #include "esp_event.h" ESP_EVENT_DECLARE_BASE(EVSE_EVENTS); typedef enum { EVSE_EVENT_INIT, EVSE_EVENT_STATE_CHANGED, // Outros eventos possíveis futuramente } evse_event_id_t; typedef enum { EVSE_STATE_EVENT_IDLE, EVSE_STATE_EVENT_WAITING, EVSE_STATE_EVENT_CHARGING, EVSE_STATE_EVENT_FAULT } evse_state_event_t; typedef struct { evse_state_event_t state; } evse_state_event_data_t; #endif // EVSE_EVENTS_H // === Fim de: components/evse/include/evse_events.h === // === Início de: components/evse/include/evse_api.h === #ifndef EVSE_API_H #define EVSE_API_H #include #include #include "esp_err.h" #include "evse_state.h" // Define evse_state_t // Inicialização void evse_init(void); void evse_process(void); // Estado evse_state_t evse_get_state(void); const char* evse_state_to_str(evse_state_t state); bool evse_is_connector_plugged(evse_state_t state); bool evse_is_limit_reached(void); // Autorização e disponibilidade bool evse_is_enabled(void); void evse_set_enabled(bool value); bool evse_is_available(void); void evse_set_available(bool value); bool evse_is_require_auth(void); void evse_set_require_auth(bool value); // Corrente uint16_t evse_get_charging_current(void); esp_err_t evse_set_charging_current(uint16_t value); uint16_t evse_get_default_charging_current(void); esp_err_t evse_set_default_charging_current(uint16_t value); uint8_t evse_get_max_charging_current(void); esp_err_t evse_set_max_charging_current(uint8_t value); // Temperatura uint8_t evse_get_temp_threshold(void); esp_err_t evse_set_temp_threshold(uint8_t value); // RCM / Socket bool evse_get_socket_outlet(void); esp_err_t evse_set_socket_outlet(bool value); bool evse_is_rcm(void); esp_err_t evse_set_rcm(bool value); // Limites uint32_t evse_get_consumption_limit(void); void evse_set_consumption_limit(uint32_t value); uint32_t evse_get_charging_time_limit(void); void evse_set_charging_time_limit(uint32_t value); uint16_t evse_get_under_power_limit(void); void evse_set_under_power_limit(uint16_t value); void evse_set_limit_reached(uint8_t value); // Limites default uint32_t evse_get_default_consumption_limit(void); void evse_set_default_consumption_limit(uint32_t value); uint32_t evse_get_default_charging_time_limit(void); void evse_set_default_charging_time_limit(uint32_t value); uint16_t evse_get_default_under_power_limit(void); void evse_set_default_under_power_limit(uint16_t value); #endif // EVSE_API_H // === Fim de: components/evse/include/evse_api.h === // === Início de: components/loadbalancer/src/loadbalancer_events.c === #include "loadbalancer_events.h" // Define a base de eventos para o loadbalancer ESP_EVENT_DEFINE_BASE(LOADBALANCER_EVENTS); // === Fim de: components/loadbalancer/src/loadbalancer_events.c === // === Início de: components/loadbalancer/src/loadbalancer.c === #include "loadbalancer.h" #include "loadbalancer_events.h" #include "esp_event.h" #include "esp_log.h" #include "freertos/FreeRTOS.h" #include "freertos/task.h" #include "input_filter.h" #include "nvs_flash.h" #include "nvs.h" #include #include "meter_events.h" #include "evse_events.h" static const char *TAG = "loadbalancer"; // Limites configuráveis #define MIN_CHARGING_CURRENT_LIMIT 6 // A #define MAX_CHARGING_CURRENT_LIMIT 32 // A #define MIN_GRID_CURRENT_LIMIT 6 // A #define MAX_GRID_CURRENT_LIMIT 100 // A // Parâmetros static uint8_t max_grid_current = MAX_GRID_CURRENT_LIMIT; static bool loadbalancer_enabled = false; static float grid_current = 0.0f; static float evse_current = 0.0f; static input_filter_t grid_filter; static input_filter_t evse_filter; #define NVS_NAMESPACE "loadbalancing" #define NVS_MAX_GRID_CURRENT "max_grid_curr" #define NVS_LOADBALANCER_ENABLED "enabled" static void loadbalancer_meter_event_handler(void *handler_arg, esp_event_base_t base, int32_t id, void *event_data) { if (id != METER_EVENT_DATA_READY || event_data == NULL) return; const meter_event_data_t *evt = (const meter_event_data_t *)event_data; ESP_LOGI(TAG, "Received meter event from source: %s", evt->source); ESP_LOGI(TAG, "Raw IRMS: [%.2f, %.2f, %.2f] A", evt->irms[0], evt->irms[1], evt->irms[2]); ESP_LOGI(TAG, "Raw VRMS: [%.1f, %.1f, %.1f] V", evt->vrms[0], evt->vrms[1], evt->vrms[2]); ESP_LOGI(TAG, "Raw Power: [W1=%d, W2=%d, W3=%d]", evt->watt[0], evt->watt[1], evt->watt[2]); ESP_LOGI(TAG, "Freq: %.2f Hz | PF: %.2f | Energy: %.3f kWh", evt->frequency, evt->power_factor, evt->total_energy); // Calcula a corrente máxima entre as 3 fases float max_irms = evt->irms[0]; for (int i = 1; i < 3; ++i) { if (evt->irms[i] > max_irms) { max_irms = evt->irms[i]; } } ESP_LOGI(TAG, "Max IRMS detected: %.2f A", max_irms); // Atualiza com filtro exponencial dependendo da origem if (strncmp(evt->source, "GRID", 4) == 0) { grid_current = input_filter_update(&grid_filter, max_irms); ESP_LOGI(TAG, "GRID IRMS (filtered): %.2f A", grid_current); } else if (strncmp(evt->source, "EVSE", 4) == 0) { evse_current = input_filter_update(&evse_filter, max_irms); ESP_LOGI(TAG, "EVSE IRMS (filtered): %.2f A", evse_current); } else { ESP_LOGW(TAG, "Unknown meter event source: %s", evt->source); } } static void loadbalancer_evse_event_handler(void *handler_arg, esp_event_base_t base, int32_t id, void *event_data) { const evse_state_event_data_t *evt = (const evse_state_event_data_t *)event_data; ESP_LOGI(TAG, "EVSE state changed: %d", evt->state); switch (evt->state) { case EVSE_STATE_EVENT_IDLE: // Vehicle is disconnected - current flow can be reduced or reset ESP_LOGI(TAG, "EVSE is IDLE - possible to release current"); break; case EVSE_STATE_EVENT_WAITING: // EV is connected but not charging yet (e.g., waiting for authorization) ESP_LOGI(TAG, "EVSE is waiting - connected but not charging"); break; case EVSE_STATE_EVENT_CHARGING: grid_current = 0.0f; evse_current = 0.0f; // Charging has started - maintain or monitor current usage ESP_LOGI(TAG, "EVSE is charging"); break; case EVSE_STATE_EVENT_FAULT: // A fault has occurred - safety measures may be needed ESP_LOGW(TAG, "EVSE is in FAULT - temporarily disabling load balancing"); // Optional: disable load balancing during fault condition // loadbalancer_set_enabled(false); break; default: ESP_LOGW(TAG, "Unknown EVSE state: %d", evt->state); break; } } // Carrega configuração do NVS static esp_err_t loadbalancer_load_config() { nvs_handle_t handle; esp_err_t err = nvs_open(NVS_NAMESPACE, NVS_READWRITE, &handle); if (err != ESP_OK) { ESP_LOGE(TAG, "Failed to open NVS for load/init: %s", esp_err_to_name(err)); return err; } bool needs_commit = false; uint8_t temp_u8; // max_grid_current err = nvs_get_u8(handle, NVS_MAX_GRID_CURRENT, &temp_u8); if (err == ESP_OK && temp_u8 >= MIN_GRID_CURRENT_LIMIT && temp_u8 <= MAX_GRID_CURRENT_LIMIT) { max_grid_current = temp_u8; } else { max_grid_current = MAX_GRID_CURRENT_LIMIT; nvs_set_u8(handle, NVS_MAX_GRID_CURRENT, max_grid_current); ESP_LOGW(TAG, "max_grid_current missing or invalid, setting default: %d", max_grid_current); needs_commit = true; } // loadbalancer_enabled err = nvs_get_u8(handle, NVS_LOADBALANCER_ENABLED, &temp_u8); if (err == ESP_OK && temp_u8 <= 1) { loadbalancer_enabled = (temp_u8 != 0); } else { loadbalancer_enabled = false; nvs_set_u8(handle, NVS_LOADBALANCER_ENABLED, 0); ESP_LOGW(TAG, "loadbalancer_enabled missing or invalid, setting default: 0"); needs_commit = true; } if (needs_commit) { nvs_commit(handle); } nvs_close(handle); return ESP_OK; } // Salva o estado habilitado no NVS void loadbalancer_set_enabled(bool enabled) { ESP_LOGI(TAG, "Setting load balancing enabled to %d", enabled); nvs_handle_t handle; esp_err_t err = nvs_open(NVS_NAMESPACE, NVS_READWRITE, &handle); if (err != ESP_OK) { ESP_LOGE(TAG, "Failed to open NVS: %s", esp_err_to_name(err)); return; } err = nvs_set_u8(handle, NVS_LOADBALANCER_ENABLED, enabled ? 1 : 0); if (err == ESP_OK) { nvs_commit(handle); loadbalancer_enabled = enabled; ESP_LOGI(TAG, "Load balancing enabled state saved"); loadbalancer_state_event_t evt = { .enabled = enabled, .timestamp_us = esp_timer_get_time()}; esp_event_post(LOADBALANCER_EVENTS, LOADBALANCER_EVENT_STATE_CHANGED, &evt, sizeof(evt), portMAX_DELAY); } else { ESP_LOGE(TAG, "Failed to save loadbalancer_enabled"); } nvs_close(handle); } // Define e salva o limite de corrente da rede esp_err_t load_balancing_set_max_grid_current(uint8_t value) { if (value < MIN_GRID_CURRENT_LIMIT || value > MAX_GRID_CURRENT_LIMIT) { ESP_LOGE(TAG, "Invalid grid current limit: %d", value); return ESP_ERR_INVALID_ARG; } nvs_handle_t handle; esp_err_t err = nvs_open(NVS_NAMESPACE, NVS_READWRITE, &handle); if (err != ESP_OK) { ESP_LOGE(TAG, "Failed to open NVS: %s", esp_err_to_name(err)); return err; } err = nvs_set_u8(handle, NVS_MAX_GRID_CURRENT, value); if (err == ESP_OK) { nvs_commit(handle); max_grid_current = value; ESP_LOGI(TAG, "max_grid_current set to: %d", value); } else { ESP_LOGE(TAG, "Failed to save max_grid_current to NVS"); } nvs_close(handle); return err; } uint8_t load_balancing_get_max_grid_current(void) { return max_grid_current; } bool loadbalancer_is_enabled(void) { return loadbalancer_enabled; } // Tarefa principal com eventos void loadbalancer_task(void *param) { while (true) { if (!loadbalancer_enabled) { vTaskDelay(pdMS_TO_TICKS(1000)); continue; } float available = max_grid_current - grid_current + evse_current; if (available < MIN_CHARGING_CURRENT_LIMIT) { available = MIN_CHARGING_CURRENT_LIMIT; } else if (available > max_grid_current) { available = max_grid_current; } ESP_LOGD(TAG, "Setting EVSE current limit: %.1f A", available); loadbalancer_charging_limit_event_t evt = { .limit = available, .timestamp_us = esp_timer_get_time()}; esp_event_post(LOADBALANCER_EVENTS, LOADBALANCER_EVENT_CHARGING_LIMIT_CHANGED, &evt, sizeof(evt), portMAX_DELAY); vTaskDelay(pdMS_TO_TICKS(1000)); } } void loadbalancer_init(void) { ESP_LOGI(TAG, "Initializing load balancer"); if (loadbalancer_load_config() != ESP_OK) { ESP_LOGW(TAG, "Failed to load/init config. Using in-memory defaults."); } input_filter_init(&grid_filter, 0.3f); input_filter_init(&evse_filter, 0.3f); if (xTaskCreate(loadbalancer_task, "loadbalancer", 4096, NULL, 4, NULL) != pdPASS) { ESP_LOGE(TAG, "Failed to create loadbalancer task"); } loadbalancer_state_event_t evt = { .enabled = loadbalancer_enabled, .timestamp_us = esp_timer_get_time()}; esp_event_post(LOADBALANCER_EVENTS, LOADBALANCER_EVENT_INIT, &evt, sizeof(evt), portMAX_DELAY); ESP_ERROR_CHECK(esp_event_handler_register(METER_EVENT, METER_EVENT_DATA_READY, &loadbalancer_meter_event_handler, NULL)); ESP_ERROR_CHECK(esp_event_handler_register(EVSE_EVENTS, EVSE_EVENT_STATE_CHANGED, &loadbalancer_evse_event_handler, NULL)); } // === Fim de: components/loadbalancer/src/loadbalancer.c === // === Início de: components/loadbalancer/src/input_filter.c === #include "input_filter.h" void input_filter_init(input_filter_t *filter, float alpha) { if (filter) { filter->alpha = alpha; filter->value = 0.0f; filter->initialized = 0; } } float input_filter_update(input_filter_t *filter, float input) { if (!filter) return input; if (!filter->initialized) { filter->value = input; filter->initialized = 1; } else { filter->value = filter->alpha * input + (1.0f - filter->alpha) * filter->value; } return filter->value; } // === Fim de: components/loadbalancer/src/input_filter.c === // === Início de: components/loadbalancer/include/loadbalancer_events.h === #pragma once #include "esp_event.h" #include #include #include "esp_timer.h" ESP_EVENT_DECLARE_BASE(LOADBALANCER_EVENTS); typedef enum { LOADBALANCER_EVENT_INIT, LOADBALANCER_EVENT_STATE_CHANGED, LOADBALANCER_EVENT_CHARGING_LIMIT_CHANGED } loadbalancer_event_id_t; typedef struct { float limit; int64_t timestamp_us; } loadbalancer_charging_limit_event_t; typedef struct { bool enabled; int64_t timestamp_us; } loadbalancer_state_event_t; // === Fim de: components/loadbalancer/include/loadbalancer_events.h === // === Início de: components/loadbalancer/include/loadbalancer.h === #ifndef LOADBALANCER_H_ #define LOADBALANCER_H_ #ifdef __cplusplus extern "C" { #endif #include #include #include "esp_err.h" /** * @brief Initializes the load balancer. * * This function configures the load balancer and its resources, including * any necessary persistence configurations, such as storage in NVS (Non-Volatile Storage). * This function prepares the system to perform load balancing efficiently. */ void loadbalancer_init(void); /** * @brief Continuous task for the load balancer. * * This function executes the load balancing logic continuously, typically in a FreeRTOS task. * It performs balance calculations, checks the grid current and energy conditions, and adjusts * the outputs as necessary to ensure efficient energy consumption. * * @param param Input parameter, usually used to pass additional information or relevant context * for the task execution. */ void loadbalancer_task(void *param); /** * @brief Enables or disables the load balancing system. * * This function allows enabling or disabling the load balancing system. When enabled, the load * balancer starts managing the grid current based on the configured limits. If disabled, the system * operates without balancing. * * The configuration is persisted in NVS, ensuring that the choice is maintained across system restarts. * * @param value If true, enables load balancing. If false, disables it. */ void loadbalancer_set_enabled(bool value); /** * @brief Checks if load balancing is enabled. * * This function returns the current status of the load balancing system. * * @return Returns true if load balancing is enabled, otherwise returns false. */ bool loadbalancer_is_enabled(void); /** * @brief Sets the maximum grid current. * * This function configures the maximum grid current that can be supplied to the load balancing system. * The value set ensures that the system does not overload the electrical infrastructure and respects * the safety limits. * * @param max_grid_current The maximum allowed current (in amperes) for the load balancing system. * This value should be appropriate for the grid capacity and the installation. */ esp_err_t load_balancing_set_max_grid_current(uint8_t max_grid_current); /** * @brief Gets the maximum grid current. * * This function retrieves the current maximum grid current limit. * * @return The maximum grid current (in amperes). */ uint8_t load_balancing_get_max_grid_current(void); #ifdef __cplusplus } #endif #endif /* LOADBALANCER_H_ */ // === Fim de: components/loadbalancer/include/loadbalancer.h === // === Início de: components/loadbalancer/include/input_filter.h === #pragma once #ifdef __cplusplus extern "C" { #endif typedef struct { float alpha; ///< Fator de suavização (0.0 a 1.0) float value; ///< Último valor filtrado int initialized; ///< Flag de inicialização } input_filter_t; /** * @brief Inicializa o filtro com o fator alpha desejado. * @param filter Ponteiro para a estrutura do filtro * @param alpha Valor entre 0.0 (mais lento) e 1.0 (sem filtro) */ void input_filter_init(input_filter_t *filter, float alpha); /** * @brief Atualiza o valor filtrado com uma nova entrada. * @param filter Ponteiro para o filtro * @param input Valor bruto * @return Valor suavizado */ float input_filter_update(input_filter_t *filter, float input); #ifdef __cplusplus } #endif // === Fim de: components/loadbalancer/include/input_filter.h === // === Início de: components/auth/src/auth_events.c === #include "auth_events.h" ESP_EVENT_DEFINE_BASE(AUTH_EVENTS); // === Fim de: components/auth/src/auth_events.c === // === Início de: components/auth/src/wiegand.c === /** * @file wiegand.c * * ESP-IDF Wiegand protocol receiver */ #include #include #include #include #include "wiegand.h" static const char *TAG = "wiegand"; #define TIMER_INTERVAL_US 50000 // 50ms #define CHECK(x) \ do \ { \ esp_err_t __; \ if ((__ = x) != ESP_OK) \ return __; \ } while (0) #define CHECK_ARG(VAL) \ do \ { \ if (!(VAL)) \ return ESP_ERR_INVALID_ARG; \ } while (0) static void isr_disable(wiegand_reader_t *reader) { gpio_set_intr_type(reader->gpio_d0, GPIO_INTR_DISABLE); gpio_set_intr_type(reader->gpio_d1, GPIO_INTR_DISABLE); } static void isr_enable(wiegand_reader_t *reader) { gpio_set_intr_type(reader->gpio_d0, GPIO_INTR_NEGEDGE); gpio_set_intr_type(reader->gpio_d1, GPIO_INTR_NEGEDGE); } #if HELPER_TARGET_IS_ESP32 static void IRAM_ATTR isr_handler(void *arg) #else static void isr_handler(void *arg) #endif { wiegand_reader_t *reader = (wiegand_reader_t *)arg; if (!reader->enabled) return; int d0 = gpio_get_level(reader->gpio_d0); int d1 = gpio_get_level(reader->gpio_d1); // ignore equal if (d0 == d1) return; // overflow if (reader->bits >= reader->size * 8) return; esp_timer_stop(reader->timer); uint8_t value; if (reader->bit_order == WIEGAND_MSB_FIRST) value = (d0 ? 0x80 : 0) >> (reader->bits % 8); else value = (d0 ? 1 : 0) << (reader->bits % 8); if (reader->byte_order == WIEGAND_MSB_FIRST) reader->buf[reader->size - reader->bits / 8 - 1] |= value; else reader->buf[reader->bits / 8] |= value; reader->bits++; esp_timer_start_once(reader->timer, TIMER_INTERVAL_US); } static void timer_handler(void *arg) { wiegand_reader_t *reader = (wiegand_reader_t *)arg; ESP_LOGI(TAG, "Got %d bits of data", reader->bits); wiegand_reader_disable(reader); if (reader->callback) reader->callback(reader); wiegand_reader_enable(reader); isr_enable(reader); } //////////////////////////////////////////////////////////////////////////////// esp_err_t wiegand_reader_init(wiegand_reader_t *reader, gpio_num_t gpio_d0, gpio_num_t gpio_d1, bool internal_pullups, size_t buf_size, wiegand_callback_t callback, wiegand_order_t bit_order, wiegand_order_t byte_order) { CHECK_ARG(reader && buf_size && callback); /* esp_err_t res = gpio_install_isr_service(0); if (res != ESP_OK && res != ESP_ERR_INVALID_STATE) return res; */ memset(reader, 0, sizeof(wiegand_reader_t)); reader->gpio_d0 = gpio_d0; reader->gpio_d1 = gpio_d1; reader->size = buf_size; reader->buf = calloc(buf_size, 1); reader->bit_order = bit_order; reader->byte_order = byte_order; reader->callback = callback; esp_timer_create_args_t timer_args = { .name = TAG, .arg = reader, .callback = timer_handler, .dispatch_method = ESP_TIMER_TASK}; CHECK(esp_timer_create(&timer_args, &reader->timer)); CHECK(gpio_set_direction(gpio_d0, GPIO_MODE_INPUT)); CHECK(gpio_set_direction(gpio_d1, GPIO_MODE_INPUT)); CHECK(gpio_set_pull_mode(gpio_d0, internal_pullups ? GPIO_PULLUP_ONLY : GPIO_FLOATING)); CHECK(gpio_set_pull_mode(gpio_d1, internal_pullups ? GPIO_PULLUP_ONLY : GPIO_FLOATING)); isr_disable(reader); CHECK(gpio_isr_handler_add(gpio_d0, isr_handler, reader)); CHECK(gpio_isr_handler_add(gpio_d1, isr_handler, reader)); isr_enable(reader); reader->enabled = true; ESP_LOGI(TAG, "Reader initialized on D0=%d, D1=%d", gpio_d0, gpio_d1); return ESP_OK; } esp_err_t wiegand_reader_disable(wiegand_reader_t *reader) { CHECK_ARG(reader); isr_disable(reader); esp_timer_stop(reader->timer); reader->enabled = false; ESP_LOGI(TAG, "Reader on D0=%d, D1=%d disabled", reader->gpio_d0, reader->gpio_d1); return ESP_OK; } esp_err_t wiegand_reader_enable(wiegand_reader_t *reader) { CHECK_ARG(reader); reader->bits = 0; memset(reader->buf, 0, reader->size); isr_enable(reader); reader->enabled = true; ESP_LOGI(TAG, "Reader on D0=%d, D1=%d enabled", reader->gpio_d0, reader->gpio_d1); return ESP_OK; } esp_err_t wiegand_reader_done(wiegand_reader_t *reader) { CHECK_ARG(reader && reader->buf); isr_disable(reader); CHECK(gpio_isr_handler_remove(reader->gpio_d0)); CHECK(gpio_isr_handler_remove(reader->gpio_d1)); esp_timer_stop(reader->timer); CHECK(esp_timer_delete(reader->timer)); free(reader->buf); ESP_LOGI(TAG, "Reader removed"); return ESP_OK; } // === Fim de: components/auth/src/wiegand.c === // === Início de: components/auth/src/auth.c === /* * auth.c */ #include "auth.h" #include "auth_events.h" #include "esp_event.h" #include #include #include #include #include #include "wiegand_reader.h" #include "nvs_flash.h" #include "nvs.h" #define MAX_TAGS 50 static const char *TAG = "Auth"; static bool enabled = false; static char valid_tags[MAX_TAGS][AUTH_TAG_MAX_LEN]; static int tag_count = 0; // =========================== // Persistência em NVS // =========================== static void load_auth_config(void) { nvs_handle_t handle; esp_err_t err = nvs_open("auth", NVS_READONLY, &handle); if (err == ESP_OK) { uint8_t val; if (nvs_get_u8(handle, "enabled", &val) == ESP_OK) { enabled = val; ESP_LOGI(TAG, "Loaded auth enabled = %d", enabled); } nvs_close(handle); } else { ESP_LOGW(TAG, "No stored auth config found. Using default."); } } static void save_auth_config(void) { nvs_handle_t handle; if (nvs_open("auth", NVS_READWRITE, &handle) == ESP_OK) { nvs_set_u8(handle, "enabled", enabled); nvs_commit(handle); nvs_close(handle); ESP_LOGI(TAG, "Auth config saved: enabled = %d", enabled); } else { ESP_LOGE(TAG, "Failed to save auth config."); } } // =========================== // Internos // =========================== static bool is_tag_valid(const char *tag) { for (int i = 0; i < tag_count; i++) { if (strncmp(valid_tags[i], tag, AUTH_TAG_MAX_LEN) == 0) { return true; } } return true; //TODO //return false; } // =========================== // API pública // =========================== void auth_set_enabled(bool value) { enabled = value; save_auth_config(); ESP_LOGI(TAG, "Auth %s", enabled ? "ENABLED" : "DISABLED"); auth_enabled_event_data_t event = { .enabled = enabled }; esp_event_post(AUTH_EVENTS, AUTH_EVENT_ENABLED_CHANGED, &event, sizeof(event), portMAX_DELAY); } bool auth_is_enabled(void) { return enabled; } bool auth_add_tag(const char *tag) { if (tag_count >= MAX_TAGS) return false; if (!tag || strlen(tag) >= AUTH_TAG_MAX_LEN) return false; if (is_tag_valid(tag)) return true; strncpy(valid_tags[tag_count], tag, AUTH_TAG_MAX_LEN - 1); valid_tags[tag_count][AUTH_TAG_MAX_LEN - 1] = '\0'; tag_count++; ESP_LOGI(TAG, "Tag added: %s", tag); return true; } bool auth_remove_tag(const char *tag) { for (int i = 0; i < tag_count; i++) { if (strncmp(valid_tags[i], tag, AUTH_TAG_MAX_LEN) == 0) { for (int j = i; j < tag_count - 1; j++) { strncpy(valid_tags[j], valid_tags[j + 1], AUTH_TAG_MAX_LEN); } tag_count--; ESP_LOGI(TAG, "Tag removed: %s", tag); return true; } } return false; } bool auth_tag_exists(const char *tag) { return is_tag_valid(tag); } void auth_list_tags(void) { ESP_LOGI(TAG, "Registered Tags (%d):", tag_count); for (int i = 0; i < tag_count; i++) { ESP_LOGI(TAG, "- %s", valid_tags[i]); } } void auth_init(void) { load_auth_config(); // carrega estado de ativação if (enabled) { initWiegand(); // só inicia se estiver habilitado ESP_LOGI(TAG, "Wiegand reader initialized (Auth enabled)"); } else { ESP_LOGI(TAG, "Auth disabled, Wiegand reader not started"); } auth_enabled_event_data_t evt = { .enabled = enabled }; esp_event_post(AUTH_EVENTS, AUTH_EVENT_INIT, &evt, sizeof(evt), portMAX_DELAY); ESP_LOGI(TAG, "Estado inicial AUTH enviado (enabled = %d)", enabled); } void auth_process_tag(const char *tag) { if (!tag || !auth_is_enabled()) { ESP_LOGW(TAG, "Auth disabled or NULL tag received."); return; } auth_tag_event_data_t event; strncpy(event.tag, tag, AUTH_EVENT_TAG_MAX_LEN - 1); event.tag[AUTH_EVENT_TAG_MAX_LEN - 1] = '\0'; event.authorized = is_tag_valid(tag); ESP_LOGI(TAG, "Tag %s: %s", tag, event.authorized ? "AUTHORIZED" : "DENIED"); esp_event_post(AUTH_EVENTS, AUTH_EVENT_TAG_PROCESSED, &event, sizeof(event), portMAX_DELAY); } // === Fim de: components/auth/src/auth.c === // === Início de: components/auth/src/wiegand_reader.c === #include #include #include #include #include #include #include #include "auth.h" #define CONFIG_EXAMPLE_BUF_SIZE 50 static const char *TAG = "WiegandReader"; static wiegand_reader_t reader; static QueueHandle_t queue = NULL; typedef struct { uint8_t data[CONFIG_EXAMPLE_BUF_SIZE]; size_t bits; } data_packet_t; static void reader_callback(wiegand_reader_t *r) { data_packet_t p; p.bits = r->bits; memcpy(p.data, r->buf, CONFIG_EXAMPLE_BUF_SIZE); xQueueSendToBack(queue, &p, 0); } static void wiegand_task(void *arg) { queue = xQueueCreate(5, sizeof(data_packet_t)); if (!queue) { ESP_LOGE(TAG, "Failed to create queue"); vTaskDelete(NULL); return; } ESP_ERROR_CHECK(wiegand_reader_init(&reader, 19, 18, true, CONFIG_EXAMPLE_BUF_SIZE, reader_callback, WIEGAND_MSB_FIRST, WIEGAND_LSB_FIRST)); data_packet_t p; while (1) { ESP_LOGI(TAG, "Waiting for Wiegand data..."); if (xQueueReceive(queue, &p, portMAX_DELAY) == pdPASS) { ESP_LOGI(TAG, "Bits received: %d", p.bits); char tag[20] = {0}; if (p.bits == 26) { snprintf(tag, sizeof(tag), "%03d%03d%03d", p.data[0], p.data[1], p.data[2]); } else if (p.bits == 34) { snprintf(tag, sizeof(tag), "%03d%03d%03d%03d", p.data[0], p.data[1], p.data[2], p.data[3]); } else { ESP_LOGW(TAG, "Unsupported bit length: %d", (int)p.bits); continue; } ESP_LOGI(TAG, "Tag read: %s", tag); auth_process_tag(tag); // agora delega toda a lógica à auth.c } } } void initWiegand(void) { ESP_LOGI(TAG, "Initializing Wiegand reader"); xTaskCreate(wiegand_task, TAG, configMINIMAL_STACK_SIZE * 4, NULL, 4, NULL); } // === Fim de: components/auth/src/wiegand_reader.c === // === Início de: components/auth/include/auth.h === #ifndef AUTH_H #define AUTH_H #include #include #ifdef __cplusplus extern "C" { #endif /// Tamanho máximo de uma tag RFID (incluindo '\0') #define AUTH_TAG_MAX_LEN 20 /// Estrutura de evento emitida após leitura de uma tag typedef struct { char tag[AUTH_TAG_MAX_LEN]; ///< Tag lida bool authorized; ///< true se a tag for reconhecida como válida } auth_event_t; /** * @brief Inicializa o sistema de autenticação. * * - Carrega a configuração (enabled) da NVS * - Inicia o leitor Wiegand * - Emite evento AUTH_EVENT_INIT com estado atual */ void auth_init(void); /** * @brief Ativa ou desativa o uso de autenticação via RFID. * * Esta configuração é persistida em NVS. Se desativado, o sistema * considerará todas as autorizações como aceitas. * * @param value true para ativar, false para desativar */ void auth_set_enabled(bool value); /** * @brief Verifica se o sistema de autenticação está habilitado. */ bool auth_is_enabled(void); /** * @brief Adiciona uma nova tag RFID à lista de autorizadas. * * @param tag String da tag (máx AUTH_TAG_MAX_LEN-1) * @return true se a tag foi adicionada, false se já existia ou inválida */ bool auth_add_tag(const char *tag); /** * @brief Remove uma tag previamente cadastrada. * * @param tag String da tag * @return true se foi removida, false se não encontrada */ bool auth_remove_tag(const char *tag); /** * @brief Verifica se uma tag já está registrada como válida. */ bool auth_tag_exists(const char *tag); /** * @brief Lista todas as tags válidas atualmente registradas (via logs). */ void auth_list_tags(void); /** * @brief Processa uma tag RFID lida (chamada normalmente pelo leitor). * * - Verifica validade * - Emite evento AUTH_EVENT_TAG_PROCESSED * - Inicia timer de expiração se autorizada */ void auth_process_tag(const char *tag); #ifdef __cplusplus } #endif #endif // AUTH_H // === Fim de: components/auth/include/auth.h === // === Início de: components/auth/include/auth_events.h === #pragma once #include "esp_event.h" #define AUTH_EVENT_TAG_MAX_LEN 32 ESP_EVENT_DECLARE_BASE(AUTH_EVENTS); typedef enum { AUTH_EVENT_TAG_PROCESSED, AUTH_EVENT_ENABLED_CHANGED, AUTH_EVENT_INIT, } auth_event_id_t; typedef struct { char tag[AUTH_EVENT_TAG_MAX_LEN]; bool authorized; } auth_tag_event_data_t; typedef struct { bool enabled; } auth_enabled_event_data_t; // === Fim de: components/auth/include/auth_events.h === // === Início de: components/auth/include/wiegand.h === /* * Copyright (c) 2021 Ruslan V. Uss * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. Neither the name of the copyright holder nor the names of itscontributors * may be used to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /** * @file wiegand.h * @defgroup wiegand wiegand * @{ * * ESP-IDF Wiegand protocol receiver * * Copyright (c) 2021 Ruslan V. Uss * * BSD Licensed as described in the file LICENSE */ #ifndef __WIEGAND_H__ #define __WIEGAND_H__ #include #include #include #ifdef __cplusplus extern "C" { #endif typedef struct wiegand_reader wiegand_reader_t; typedef void (*wiegand_callback_t)(wiegand_reader_t *reader); /** * Bit and byte order of data */ typedef enum { WIEGAND_MSB_FIRST = 0, WIEGAND_LSB_FIRST } wiegand_order_t; /** * Wiegand reader descriptor */ struct wiegand_reader { gpio_num_t gpio_d0, gpio_d1; wiegand_callback_t callback; wiegand_order_t bit_order; wiegand_order_t byte_order; uint8_t *buf; size_t size; size_t bits; esp_timer_handle_t timer; bool start_parity; bool enabled; }; /** * @brief Create and initialize reader instance. * * @param reader Reader descriptor * @param gpio_d0 GPIO pin for D0 * @param gpio_d1 GPIO pin for D0 * @param internal_pullups Enable internal pull-up resistors for D0 and D1 GPIO * @param buf_size Reader buffer size in bytes, must be large enough to * contain entire Wiegand key * @param callback Callback function for processing received codes * @param bit_order Bit order of data * @param byte_order Byte order of data * @return `ESP_OK` on success */ esp_err_t wiegand_reader_init(wiegand_reader_t *reader, gpio_num_t gpio_d0, gpio_num_t gpio_d1, bool internal_pullups, size_t buf_size, wiegand_callback_t callback, wiegand_order_t bit_order, wiegand_order_t byte_order); /** * @brief Disable reader * * While reader is disabled, it will not receive new data * * @param reader Reader descriptor * @return `ESP_OK` on success */ esp_err_t wiegand_reader_disable(wiegand_reader_t *reader); /** * @brief Enable reader * * @param reader Reader descriptor * @return `ESP_OK` on success */ esp_err_t wiegand_reader_enable(wiegand_reader_t *reader); /** * @brief Delete reader instance. * * @param reader Reader descriptor * @return `ESP_OK` on success */ esp_err_t wiegand_reader_done(wiegand_reader_t *reader); #ifdef __cplusplus } #endif /**@}*/ #endif /* __WIEGAND_H__ */ // === Fim de: components/auth/include/wiegand.h === // === Início de: components/auth/include/wiegand_reader.h === #ifndef WIEGAND_READER_H #define WIEGAND_READER_H #ifdef __cplusplus extern "C" { #endif void initWiegand(void); #ifdef __cplusplus } #endif #endif // WIEGAND_READER_H // === Fim de: components/auth/include/wiegand_reader.h === // === Início de: components/rest_api/src/ocpp_api.c === // ========================= // ocpp_api.c // ========================= #include "ocpp_api.h" #include "esp_log.h" #include "cJSON.h" static const char *TAG = "ocpp_api"; static struct { char url[256]; char chargeBoxId[128]; char certificate[256]; char privateKey[256]; } ocpp_config = {"", "", "", ""}; static esp_err_t ocpp_get_status_handler(httpd_req_t *req) { httpd_resp_set_type(req, "application/json"); cJSON *status = cJSON_CreateObject(); cJSON_AddStringToObject(status, "status", "connected"); char *str = cJSON_Print(status); httpd_resp_sendstr(req, str); free(str); cJSON_Delete(status); return ESP_OK; } static esp_err_t ocpp_get_config_handler(httpd_req_t *req) { httpd_resp_set_type(req, "application/json"); cJSON *json = cJSON_CreateObject(); cJSON_AddStringToObject(json, "url", ocpp_config.url); cJSON_AddStringToObject(json, "chargeBoxId", ocpp_config.chargeBoxId); cJSON_AddStringToObject(json, "certificate", ocpp_config.certificate); cJSON_AddStringToObject(json, "privateKey", ocpp_config.privateKey); char *str = cJSON_Print(json); httpd_resp_sendstr(req, str); free(str); cJSON_Delete(json); return ESP_OK; } static esp_err_t ocpp_post_config_handler(httpd_req_t *req) { char buf[512]; int len = httpd_req_recv(req, buf, sizeof(buf) - 1); if (len <= 0) { httpd_resp_send_err(req, HTTPD_400_BAD_REQUEST, "Empty body"); return ESP_FAIL; } buf[len] = '\0'; cJSON *json = cJSON_Parse(buf); if (!json) { httpd_resp_send_err(req, HTTPD_400_BAD_REQUEST, "Invalid JSON"); return ESP_FAIL; } cJSON *url = cJSON_GetObjectItem(json, "url"); if (url) strlcpy(ocpp_config.url, url->valuestring, sizeof(ocpp_config.url)); cJSON *id = cJSON_GetObjectItem(json, "chargeBoxId"); if (id) strlcpy(ocpp_config.chargeBoxId, id->valuestring, sizeof(ocpp_config.chargeBoxId)); cJSON *cert = cJSON_GetObjectItem(json, "certificate"); if (cert) strlcpy(ocpp_config.certificate, cert->valuestring, sizeof(ocpp_config.certificate)); cJSON *key = cJSON_GetObjectItem(json, "privateKey"); if (key) strlcpy(ocpp_config.privateKey, key->valuestring, sizeof(ocpp_config.privateKey)); cJSON_Delete(json); httpd_resp_sendstr(req, "OCPP config atualizada com sucesso"); return ESP_OK; } void register_ocpp_handlers(httpd_handle_t server, void *ctx) { httpd_uri_t status_uri = { .uri = "/api/v1/ocpp", .method = HTTP_GET, .handler = ocpp_get_status_handler, .user_ctx = ctx }; httpd_register_uri_handler(server, &status_uri); httpd_uri_t get_uri = { .uri = "/api/v1/config/ocpp", .method = HTTP_GET, .handler = ocpp_get_config_handler, .user_ctx = ctx }; httpd_register_uri_handler(server, &get_uri); httpd_uri_t post_uri = { .uri = "/api/v1/config/ocpp", .method = HTTP_POST, .handler = ocpp_post_config_handler, .user_ctx = ctx }; httpd_register_uri_handler(server, &post_uri); } // === Fim de: components/rest_api/src/ocpp_api.c === // === Início de: components/rest_api/src/static_file_api.c === #include "static_file_api.h" #include "esp_log.h" #include #include #include "esp_vfs.h" static const char *TAG = "static_file_api"; #define FILE_PATH_MAX (ESP_VFS_PATH_MAX + 128) #define SCRATCH_BUFSIZE (10240) typedef struct rest_server_context { char base_path[ESP_VFS_PATH_MAX + 1]; char scratch[SCRATCH_BUFSIZE]; } rest_server_context_t; #define CHECK_FILE_EXTENSION(filename, ext) \ (strcasecmp(&filename[strlen(filename) - strlen(ext)], ext) == 0) static esp_err_t set_content_type_from_file(httpd_req_t *req, const char *filepath) { const char *type = "text/plain"; if (CHECK_FILE_EXTENSION(filepath, ".html")) type = "text/html"; else if (CHECK_FILE_EXTENSION(filepath, ".js")) type = "application/javascript"; else if (CHECK_FILE_EXTENSION(filepath, ".css")) type = "text/css"; else if (CHECK_FILE_EXTENSION(filepath, ".png")) type = "image/png"; else if (CHECK_FILE_EXTENSION(filepath, ".ico")) type = "image/x-icon"; else if (CHECK_FILE_EXTENSION(filepath, ".svg")) type = "image/svg+xml"; return httpd_resp_set_type(req, type); } static esp_err_t static_get_handler(httpd_req_t *req) { char filepath[FILE_PATH_MAX]; rest_server_context_t *ctx = (rest_server_context_t *) req->user_ctx; strlcpy(filepath, ctx->base_path, sizeof(filepath)); if (req->uri[strlen(req->uri) - 1] == '/') { strlcat(filepath, "/index.html", sizeof(filepath)); } else { strlcat(filepath, req->uri, sizeof(filepath)); } int fd = open(filepath, O_RDONLY, 0); if (fd == -1) { // fallback para /index.html (SPA) ESP_LOGW(TAG, "Arquivo não encontrado: %s. Tentando index.html", filepath); strlcpy(filepath, ctx->base_path, sizeof(filepath)); strlcat(filepath, "/index.html", sizeof(filepath)); fd = open(filepath, O_RDONLY, 0); if (fd == -1) { httpd_resp_send_err(req, HTTPD_404_NOT_FOUND, "Arquivo não encontrado"); return ESP_FAIL; } } set_content_type_from_file(req, filepath); char *chunk = ctx->scratch; ssize_t read_bytes; do { read_bytes = read(fd, chunk, SCRATCH_BUFSIZE); if (read_bytes == -1) { ESP_LOGE(TAG, "Erro lendo arquivo: %s", filepath); close(fd); httpd_resp_send_err(req, HTTPD_500_INTERNAL_SERVER_ERROR, "Erro ao ler arquivo"); return ESP_FAIL; } else if (read_bytes > 0) { if (httpd_resp_send_chunk(req, chunk, read_bytes) != ESP_OK) { close(fd); httpd_resp_sendstr_chunk(req, NULL); httpd_resp_send_err(req, HTTPD_500_INTERNAL_SERVER_ERROR, "Erro ao enviar arquivo"); return ESP_FAIL; } } } while (read_bytes > 0); close(fd); httpd_resp_send_chunk(req, NULL, 0); return ESP_OK; } void register_static_file_handlers(httpd_handle_t server, void *ctx) { httpd_uri_t uri = { .uri = "/*", .method = HTTP_GET, .handler = static_get_handler, .user_ctx = ctx }; httpd_register_uri_handler(server, &uri); } // === Fim de: components/rest_api/src/static_file_api.c === // === Início de: components/rest_api/src/meters_settings_api.c === #include "meters_settings_api.h" #include "meter_manager.h" // Atualizado para usar o novo manager #include "esp_log.h" #include "cJSON.h" static const char *TAG = "meters_settings_api"; // Função para recuperar as configurações dos contadores static esp_err_t meters_config_get_handler(httpd_req_t *req) { ESP_LOGI(TAG, "Received GET request for /api/v1/config/meters"); httpd_resp_set_type(req, "application/json"); cJSON *config = cJSON_CreateObject(); // Recuperando as configurações dos contadores meter_type_t gridmeterType = meter_manager_grid_get_model(); meter_type_t evsemeterType = meter_manager_evse_get_model(); ESP_LOGI(TAG, "Grid meter type: %s", meter_type_to_str(gridmeterType)); ESP_LOGI(TAG, "EVSE meter type: %s", meter_type_to_str(evsemeterType)); // Adicionando os tipos de contadores ao objeto JSON cJSON_AddStringToObject(config, "gridmeter", meter_type_to_str(gridmeterType)); cJSON_AddStringToObject(config, "evsemeter", meter_type_to_str(evsemeterType)); // Convertendo o objeto JSON para uma string const char *json_str = cJSON_Print(config); ESP_LOGI(TAG, "Returning meters config: %s", json_str); httpd_resp_sendstr(req, json_str); // Liberação da memória free((void *)json_str); cJSON_Delete(config); return ESP_OK; } // Função para atualizar as configurações dos contadores static esp_err_t meters_config_post_handler(httpd_req_t *req) { ESP_LOGI(TAG, "Received POST request for /api/v1/config/meters"); char buf[512]; int len = httpd_req_recv(req, buf, sizeof(buf) - 1); if (len <= 0) { ESP_LOGE(TAG, "Received empty body in POST request"); httpd_resp_send_err(req, HTTPD_400_BAD_REQUEST, "Empty body"); return ESP_FAIL; } buf[len] = '\0'; // Garantir que a string está terminada ESP_LOGI(TAG, "Received POST data: %s", buf); cJSON *json = cJSON_Parse(buf); if (!json) { ESP_LOGE(TAG, "Failed to parse JSON data"); // Resposta detalhada de erro httpd_resp_send_err(req, HTTPD_400_BAD_REQUEST, "Invalid JSON format"); return ESP_FAIL; } // Atualizando os contadores cJSON *gridmeter = cJSON_GetObjectItem(json, "gridmeter"); if (gridmeter) { meter_type_t gridType = string_to_meter_type(gridmeter->valuestring); // Usando a função string_to_meter_type ESP_LOGI(TAG, "Updating grid meter type to: %s", gridmeter->valuestring); meter_manager_grid_set_model(gridType); } cJSON *evsemeter = cJSON_GetObjectItem(json, "evsemeter"); if (evsemeter) { meter_type_t evseType = string_to_meter_type(evsemeter->valuestring); // Usando a função string_to_meter_type ESP_LOGI(TAG, "Updating EVSE meter type to: %s", evsemeter->valuestring); meter_manager_evse_set_model(evseType); } cJSON_Delete(json); httpd_resp_sendstr(req, "Meters updated successfully"); ESP_LOGI(TAG, "Meters configuration updated successfully"); return ESP_OK; } // Registrando os manipuladores de URI para os contadores void register_meters_settings_handlers(httpd_handle_t server, void *ctx) { ESP_LOGI(TAG, "Registering URI handlers for meters settings"); // URI para o método GET httpd_uri_t meters_get_uri = { .uri = "/api/v1/config/meters", .method = HTTP_GET, .handler = meters_config_get_handler, .user_ctx = ctx }; ESP_LOGI(TAG, "Registering GET handler for /api/v1/config/meters"); httpd_register_uri_handler(server, &meters_get_uri); // URI para o método POST httpd_uri_t meters_post_uri = { .uri = "/api/v1/config/meters", .method = HTTP_POST, .handler = meters_config_post_handler, .user_ctx = ctx }; ESP_LOGI(TAG, "Registering POST handler for /api/v1/config/meters"); httpd_register_uri_handler(server, &meters_post_uri); } // === Fim de: components/rest_api/src/meters_settings_api.c === // === Início de: components/rest_api/src/rest_main.c === #include "rest_main.h" #include "evse_settings_api.h" #include "meters_settings_api.h" #include "loadbalancing_settings_api.h" #include "network_api.h" #include "ocpp_api.h" #include "auth_api.h" #include "dashboard_api.h" #include "static_file_api.h" #include "esp_log.h" static const char *TAG = "rest_main"; esp_err_t rest_server_init(const char *base_path) { ESP_LOGI(TAG, "Initializing REST API with base path: %s", base_path); rest_server_context_t *ctx = calloc(1, sizeof(rest_server_context_t)); if (!ctx) { ESP_LOGE(TAG, "Failed to allocate memory for REST context"); return ESP_ERR_NO_MEM; } strlcpy(ctx->base_path, base_path, sizeof(ctx->base_path)); httpd_config_t config = HTTPD_DEFAULT_CONFIG(); config.uri_match_fn = httpd_uri_match_wildcard; config.max_uri_handlers = 32; httpd_handle_t server = NULL; esp_err_t err = httpd_start(&server, &config); if (err != ESP_OK) { ESP_LOGE(TAG, "Failed to start HTTP server: %s", esp_err_to_name(err)); free(ctx); return err; } ESP_LOGI(TAG, "HTTP server started successfully"); // Register endpoint groups register_evse_settings_handlers(server, ctx); // Apenas chamando a função sem comparação register_network_handlers(server, ctx); // Apenas chamando a função sem comparação register_ocpp_handlers(server, ctx); // Apenas chamando a função sem comparação register_auth_handlers(server, ctx); // Apenas chamando a função sem comparação register_dashboard_handlers(server, ctx); // Apenas chamando a função sem comparação register_meters_settings_handlers(server, ctx); // Apenas chamando a função sem comparação register_loadbalancing_settings_handlers(server, ctx); // Apenas chamando a função sem comparação register_static_file_handlers(server, ctx); // Apenas chamando a função sem comparação ESP_LOGI(TAG, "All REST API endpoint groups registered successfully"); return ESP_OK; } // === Fim de: components/rest_api/src/rest_main.c === // === Início de: components/rest_api/src/network_api.c === // ========================= // network_api.c // ========================= #include "network_api.h" #include "esp_log.h" #include "cJSON.h" #include "wifi.h" #include "mqtt.h" static const char *TAG = "network_api"; typedef struct { bool enabled; char ssid[33]; char password[65]; } wifi_task_data_t; static void wifi_apply_config_task(void *param) { wifi_task_data_t *data = (wifi_task_data_t *)param; ESP_LOGI("wifi_task", "Applying Wi-Fi config in background task"); wifi_set_config(data->enabled, data->ssid, data->password); free(data); vTaskDelete(NULL); } static esp_err_t wifi_get_handler(httpd_req_t *req) { ESP_LOGI(TAG, "Handling GET /api/v1/config/wifi"); httpd_resp_set_type(req, "application/json"); // Obter dados da NVS via wifi.c bool enabled = wifi_get_enabled(); char ssid[33] = {0}; char password[65] = {0}; wifi_get_ssid(ssid); wifi_get_password(password); // Criar JSON cJSON *json = cJSON_CreateObject(); cJSON_AddBoolToObject(json, "enabled", enabled); cJSON_AddStringToObject(json, "ssid", ssid); cJSON_AddStringToObject(json, "password", password); // Enviar resposta char *response = cJSON_Print(json); httpd_resp_sendstr(req, response); // Limpeza free(response); cJSON_Delete(json); return ESP_OK; } static esp_err_t wifi_post_handler(httpd_req_t *req) { ESP_LOGI(TAG, "Handling POST /api/v1/config/wifi"); char buf[512]; int len = httpd_req_recv(req, buf, sizeof(buf) - 1); if (len <= 0) return ESP_FAIL; buf[len] = '\0'; cJSON *json = cJSON_Parse(buf); if (!json) return ESP_FAIL; // Valores padrão bool enabled = false; const char *ssid = NULL; const char *password = NULL; cJSON *j_enabled = cJSON_GetObjectItem(json, "enabled"); if (cJSON_IsBool(j_enabled)) enabled = j_enabled->valueint; cJSON *j_ssid = cJSON_GetObjectItem(json, "ssid"); if (cJSON_IsString(j_ssid)) ssid = j_ssid->valuestring; cJSON *j_password = cJSON_GetObjectItem(json, "password"); if (cJSON_IsString(j_password)) password = j_password->valuestring; // Enviar resposta antes de alterar Wi-Fi httpd_resp_sendstr(req, "Wi-Fi config atualizada com sucesso"); // Alocar struct para passar para a task wifi_task_data_t *task_data = malloc(sizeof(wifi_task_data_t)); if (!task_data) { cJSON_Delete(json); ESP_LOGE(TAG, "Memory allocation failed for Wi-Fi task"); return ESP_ERR_NO_MEM; } task_data->enabled = enabled; strncpy(task_data->ssid, ssid ? ssid : "", sizeof(task_data->ssid)); strncpy(task_data->password, password ? password : "", sizeof(task_data->password)); // Criar task normal com função C xTaskCreate( wifi_apply_config_task, "wifi_config_task", 4096, task_data, 3, NULL ); cJSON_Delete(json); return ESP_OK; } static esp_err_t config_mqtt_get_handler(httpd_req_t *req) { ESP_LOGI(TAG, "Handling GET /api/v1/config/mqtt"); httpd_resp_set_type(req, "application/json"); bool enabled = mqtt_get_enabled(); char server[64] = {0}; char base_topic[32] = {0}; char username[32] = {0}; char password[64] = {0}; uint16_t periodicity = mqtt_get_periodicity(); mqtt_get_server(server); mqtt_get_base_topic(base_topic); mqtt_get_user(username); mqtt_get_password(password); ESP_LOGI(TAG, "MQTT Config:"); ESP_LOGI(TAG, " Enabled: %s", enabled ? "true" : "false"); ESP_LOGI(TAG, " Server: %s", server); ESP_LOGI(TAG, " Topic: %s", base_topic); ESP_LOGI(TAG, " Username: %s", username); ESP_LOGI(TAG, " Password: %s", password); ESP_LOGI(TAG, " Periodicity: %d", periodicity); cJSON *config = cJSON_CreateObject(); cJSON_AddBoolToObject(config, "enabled", enabled); cJSON_AddStringToObject(config, "host", server); cJSON_AddNumberToObject(config, "port", 1883); cJSON_AddStringToObject(config, "username", username); cJSON_AddStringToObject(config, "password", password); cJSON_AddStringToObject(config, "topic", base_topic); cJSON_AddNumberToObject(config, "periodicity", periodicity); const char *config_str = cJSON_Print(config); httpd_resp_sendstr(req, config_str); free((void *)config_str); cJSON_Delete(config); return ESP_OK; } static esp_err_t config_mqtt_post_handler(httpd_req_t *req) { ESP_LOGI(TAG, "Handling POST /api/v1/config/mqtt"); char buf[512]; int len = httpd_req_recv(req, buf, sizeof(buf) - 1); if (len <= 0) { ESP_LOGE(TAG, "Failed to read request body"); httpd_resp_send_err(req, HTTPD_400_BAD_REQUEST, "Invalid request body"); return ESP_FAIL; } buf[len] = '\0'; ESP_LOGI(TAG, "Received JSON: %s", buf); cJSON *json = cJSON_Parse(buf); if (!json) { ESP_LOGE(TAG, "Invalid JSON format"); httpd_resp_send_err(req, HTTPD_400_BAD_REQUEST, "Invalid JSON"); return ESP_FAIL; } bool enabled = false; const char *host = NULL, *topic = NULL, *username = NULL, *password = NULL; int periodicity = 30; if (cJSON_IsBool(cJSON_GetObjectItem(json, "enabled"))) enabled = cJSON_GetObjectItem(json, "enabled")->valueint; cJSON *j_host = cJSON_GetObjectItem(json, "host"); if (cJSON_IsString(j_host)) host = j_host->valuestring; cJSON *j_topic = cJSON_GetObjectItem(json, "topic"); if (cJSON_IsString(j_topic)) topic = j_topic->valuestring; cJSON *j_user = cJSON_GetObjectItem(json, "username"); if (cJSON_IsString(j_user)) username = j_user->valuestring; cJSON *j_pass = cJSON_GetObjectItem(json, "password"); if (cJSON_IsString(j_pass)) password = j_pass->valuestring; cJSON *j_periodicity = cJSON_GetObjectItem(json, "periodicity"); if (cJSON_IsNumber(j_periodicity)) periodicity = j_periodicity->valueint; ESP_LOGI(TAG, "Applying MQTT config:"); ESP_LOGI(TAG, " Enabled: %s", enabled ? "true" : "false"); ESP_LOGI(TAG, " Host: %s", host); ESP_LOGI(TAG, " Topic: %s", topic); ESP_LOGI(TAG, " Username: %s", username); ESP_LOGI(TAG, " Password: %s", password); ESP_LOGI(TAG, " Periodicity: %d", periodicity); esp_err_t err = mqtt_set_config(enabled, host, topic, username, password, periodicity); if (err != ESP_OK) { ESP_LOGE(TAG, "Failed to apply MQTT config (code %d)", err); httpd_resp_send_err(req, HTTPD_500_INTERNAL_SERVER_ERROR, "Failed to apply config"); cJSON_Delete(json); return ESP_FAIL; } httpd_resp_sendstr(req, "Configuração MQTT atualizada com sucesso"); cJSON_Delete(json); return ESP_OK; } void register_network_handlers(httpd_handle_t server, void *ctx) { httpd_uri_t wifi_get = { .uri = "/api/v1/config/wifi", .method = HTTP_GET, .handler = wifi_get_handler, .user_ctx = ctx }; httpd_register_uri_handler(server, &wifi_get); httpd_uri_t wifi_post = { .uri = "/api/v1/config/wifi", .method = HTTP_POST, .handler = wifi_post_handler, .user_ctx = ctx }; httpd_register_uri_handler(server, &wifi_post); // URI handler for getting MQTT config httpd_uri_t config_mqtt_get_uri = { .uri = "/api/v1/config/mqtt", .method = HTTP_GET, .handler = config_mqtt_get_handler, .user_ctx = ctx }; httpd_register_uri_handler(server, &config_mqtt_get_uri); // URI handler for posting MQTT config httpd_uri_t config_mqtt_post_uri = { .uri = "/api/v1/config/mqtt", .method = HTTP_POST, .handler = config_mqtt_post_handler, .user_ctx = ctx }; httpd_register_uri_handler(server, &config_mqtt_post_uri); } // === Fim de: components/rest_api/src/network_api.c === // === Início de: components/rest_api/src/dashboard_api.c === #include "dashboard_api.h" #include "esp_log.h" #include "cJSON.h" #include "evse_api.h" #include "evse_error.h" static const char *TAG = "dashboard_api"; static esp_err_t dashboard_get_handler(httpd_req_t *req) { httpd_resp_set_type(req, "application/json"); // Cria o objeto JSON principal do dashboard cJSON *dashboard = cJSON_CreateObject(); // Status do sistema evse_state_t state = evse_get_state(); cJSON_AddStringToObject(dashboard, "status", evse_state_to_str(state)); // Carregador - informação do carregador 1 (adapte conforme necessário) cJSON *chargers = cJSON_CreateArray(); cJSON *charger1 = cJSON_CreateObject(); cJSON_AddNumberToObject(charger1, "id", 1); cJSON_AddStringToObject(charger1, "status", evse_state_to_str(state)); cJSON_AddNumberToObject(charger1, "current", evse_get_charging_current() / 10); cJSON_AddNumberToObject(charger1, "maxCurrent", evse_get_max_charging_current()); // Calcular a potência com base na corrente (considerando 230V) int power = (evse_get_charging_current() / 10) * 230; cJSON_AddNumberToObject(charger1, "power", power); cJSON_AddItemToArray(chargers, charger1); cJSON_AddItemToObject(dashboard, "chargers", chargers); // Consumo e tempo de carregamento cJSON_AddNumberToObject(dashboard, "energyConsumed", evse_get_consumption_limit()); cJSON_AddNumberToObject(dashboard, "chargingTime", evse_get_charging_time_limit()); // Alertas cJSON *alerts = cJSON_CreateArray(); if (evse_is_limit_reached()) { cJSON_AddItemToArray(alerts, cJSON_CreateString("Limite de consumo atingido.")); } if (!evse_is_available()) { cJSON_AddItemToArray(alerts, cJSON_CreateString("Estação indisponível.")); } if (!evse_is_enabled()) { cJSON_AddItemToArray(alerts, cJSON_CreateString("EVSE desativado.")); } cJSON_AddItemToObject(dashboard, "alerts", alerts); // Erros uint32_t error_bits = evse_get_error(); cJSON *errors = cJSON_CreateArray(); if (error_bits & EVSE_ERR_DIODE_SHORT_BIT) cJSON_AddItemToArray(errors, cJSON_CreateString("Diodo curto-circuitado")); if (error_bits & EVSE_ERR_LOCK_FAULT_BIT) cJSON_AddItemToArray(errors, cJSON_CreateString("Falha no travamento")); if (error_bits & EVSE_ERR_UNLOCK_FAULT_BIT) cJSON_AddItemToArray(errors, cJSON_CreateString("Falha no destravamento")); if (error_bits & EVSE_ERR_RCM_SELFTEST_FAULT_BIT) cJSON_AddItemToArray(errors, cJSON_CreateString("Falha no autoteste do RCM")); if (error_bits & EVSE_ERR_RCM_TRIGGERED_BIT) cJSON_AddItemToArray(errors, cJSON_CreateString("RCM disparado")); if (error_bits & EVSE_ERR_TEMPERATURE_HIGH_BIT) cJSON_AddItemToArray(errors, cJSON_CreateString("Temperatura elevada")); if (error_bits & EVSE_ERR_PILOT_FAULT_BIT) cJSON_AddItemToArray(errors, cJSON_CreateString("Erro no sinal piloto")); if (error_bits & EVSE_ERR_TEMPERATURE_FAULT_BIT) cJSON_AddItemToArray(errors, cJSON_CreateString("Falha no sensor de temperatura")); cJSON_AddItemToObject(dashboard, "errors", errors); // Enviar resposta JSON const char *json_str = cJSON_Print(dashboard); httpd_resp_sendstr(req, json_str); // Liberar memória free((void *)json_str); cJSON_Delete(dashboard); return ESP_OK; } void register_dashboard_handlers(httpd_handle_t server, void *ctx) { httpd_uri_t uri = { .uri = "/api/v1/dashboard", .method = HTTP_GET, .handler = dashboard_get_handler, .user_ctx = ctx }; httpd_register_uri_handler(server, &uri); } // === Fim de: components/rest_api/src/dashboard_api.c === // === Início de: components/rest_api/src/auth_api.c === // ========================= // auth_api.c // ========================= #include "auth_api.h" #include "auth.h" #include "esp_log.h" #include "cJSON.h" static const char *TAG = "auth_api"; static struct { char username[128]; } users[10] = { /*{"admin"}, {"user1"}*/ }; static int num_users = 2; static esp_err_t auth_methods_get_handler(httpd_req_t *req) { httpd_resp_set_type(req, "application/json"); cJSON *json = cJSON_CreateObject(); cJSON_AddBoolToObject(json, "RFID", auth_is_enabled() ); char *str = cJSON_PrintUnformatted(json); httpd_resp_sendstr(req, str); free(str); cJSON_Delete(json); return ESP_OK; } static esp_err_t auth_methods_post_handler(httpd_req_t *req) { char buf[256]; int len = httpd_req_recv(req, buf, sizeof(buf) - 1); if (len <= 0) { httpd_resp_send_err(req, HTTPD_500_INTERNAL_SERVER_ERROR, "Erro ao receber dados"); return ESP_FAIL; } buf[len] = '\0'; cJSON *json = cJSON_Parse(buf); if (!json) { httpd_resp_send_err(req, HTTPD_400_BAD_REQUEST, "JSON inválido"); return ESP_FAIL; } cJSON *rfid = cJSON_GetObjectItem(json, "RFID"); if (rfid && cJSON_IsBool(rfid)) { auth_set_enabled(cJSON_IsTrue(rfid)); } else { cJSON_Delete(json); httpd_resp_send_err(req, HTTPD_400_BAD_REQUEST, "Campo 'RFID' inválido ou ausente"); return ESP_FAIL; } cJSON_Delete(json); httpd_resp_sendstr(req, "Métodos de autenticação atualizados"); return ESP_OK; } static esp_err_t users_get_handler(httpd_req_t *req) { httpd_resp_set_type(req, "application/json"); cJSON *root = cJSON_CreateObject(); cJSON *list = cJSON_CreateArray(); for (int i = 0; i < num_users; ++i) { cJSON *u = cJSON_CreateObject(); cJSON_AddStringToObject(u, "username", users[i].username); cJSON_AddItemToArray(list, u); } cJSON_AddItemToObject(root, "users", list); char *str = cJSON_Print(root); httpd_resp_sendstr(req, str); free(str); cJSON_Delete(root); return ESP_OK; } static esp_err_t users_post_handler(httpd_req_t *req) { char buf[128]; int len = httpd_req_recv(req, buf, sizeof(buf) - 1); if (len <= 0) return ESP_FAIL; buf[len] = '\0'; if (num_users < 10) { strlcpy(users[num_users].username, buf, sizeof(users[num_users].username)); num_users++; httpd_resp_sendstr(req, "Usuário adicionado com sucesso"); } else { httpd_resp_send_err(req, HTTPD_400_BAD_REQUEST, "Limite de usuários atingido"); } return ESP_OK; } static esp_err_t users_delete_handler(httpd_req_t *req) { char query[128]; if (httpd_req_get_url_query_str(req, query, sizeof(query)) == ESP_OK) { char username[128]; if (httpd_query_key_value(query, "username", username, sizeof(username)) == ESP_OK) { for (int i = 0; i < num_users; i++) { if (strcmp(users[i].username, username) == 0) { for (int j = i; j < num_users - 1; j++) { users[j] = users[j + 1]; } num_users--; httpd_resp_sendstr(req, "Usuário removido com sucesso"); return ESP_OK; } } } } httpd_resp_send_err(req, HTTPD_400_BAD_REQUEST, "Usuário não encontrado"); return ESP_FAIL; } void register_auth_handlers(httpd_handle_t server, void *ctx) { httpd_register_uri_handler(server, &(httpd_uri_t){ .uri = "/api/v1/config/auth-methods", .method = HTTP_GET, .handler = auth_methods_get_handler, .user_ctx = ctx }); httpd_register_uri_handler(server, &(httpd_uri_t){ .uri = "/api/v1/config/auth-methods", .method = HTTP_POST, .handler = auth_methods_post_handler, .user_ctx = ctx }); httpd_register_uri_handler(server, &(httpd_uri_t){ .uri = "/api/v1/config/users", .method = HTTP_GET, .handler = users_get_handler, .user_ctx = ctx }); httpd_register_uri_handler(server, &(httpd_uri_t){ .uri = "/api/v1/config/users", .method = HTTP_POST, .handler = users_post_handler, .user_ctx = ctx }); httpd_register_uri_handler(server, &(httpd_uri_t){ .uri = "/api/v1/config/users", .method = HTTP_DELETE, .handler = users_delete_handler, .user_ctx = ctx }); } // === Fim de: components/rest_api/src/auth_api.c === // === Início de: components/rest_api/src/loadbalancing_settings_api.c === #include "loadbalancing_settings_api.h" #include "loadbalancer.h" #include "esp_log.h" #include "cJSON.h" static const char *TAG = "loadbalancing_settings_api"; // GET Handler: Retorna configurações atuais de load balancing static esp_err_t loadbalancing_config_get_handler(httpd_req_t *req) { bool enabled = loadbalancer_is_enabled(); uint8_t currentLimit = load_balancing_get_max_grid_current(); ESP_LOGI(TAG, "Fetching load balancing settings: enabled = %d, currentLimit = %u", enabled, currentLimit); httpd_resp_set_type(req, "application/json"); cJSON *config = cJSON_CreateObject(); cJSON_AddBoolToObject(config, "loadBalancingEnabled", enabled); cJSON_AddNumberToObject(config, "loadBalancingCurrentLimit", currentLimit); const char *json_str = cJSON_Print(config); httpd_resp_sendstr(req, json_str); ESP_LOGI(TAG, "Returned config: %s", json_str); free((void *)json_str); cJSON_Delete(config); return ESP_OK; } // POST Handler: Atualiza configurações de load balancing static esp_err_t loadbalancing_config_post_handler(httpd_req_t *req) { char buf[512]; int len = httpd_req_recv(req, buf, sizeof(buf) - 1); if (len <= 0) { ESP_LOGE(TAG, "Received empty POST body"); httpd_resp_send_err(req, HTTPD_400_BAD_REQUEST, "Empty body"); return ESP_FAIL; } buf[len] = '\0'; ESP_LOGI(TAG, "Received POST data: %s", buf); cJSON *json = cJSON_Parse(buf); if (!json) { ESP_LOGE(TAG, "Invalid JSON"); httpd_resp_send_err(req, HTTPD_400_BAD_REQUEST, "Invalid JSON"); return ESP_FAIL; } // Atualizar estado habilitado cJSON *enabled_item = cJSON_GetObjectItem(json, "loadBalancingEnabled"); if (enabled_item && cJSON_IsBool(enabled_item)) { bool isEnabled = cJSON_IsTrue(enabled_item); loadbalancer_set_enabled(isEnabled); ESP_LOGI(TAG, "Updated loadBalancingEnabled to: %d", isEnabled); } // Atualizar limite de corrente cJSON *limit_item = cJSON_GetObjectItem(json, "loadBalancingCurrentLimit"); if (limit_item && cJSON_IsNumber(limit_item)) { uint8_t currentLimit = (uint8_t)limit_item->valuedouble; // Validar intervalo if (currentLimit < 6 || currentLimit > 100) { ESP_LOGW(TAG, "Rejected invalid currentLimit: %d", currentLimit); cJSON_Delete(json); httpd_resp_send_err(req, HTTPD_400_BAD_REQUEST, "Invalid currentLimit (must be 6-100)"); return ESP_FAIL; } esp_err_t err = load_balancing_set_max_grid_current(currentLimit); if (err != ESP_OK) { ESP_LOGE(TAG, "Failed to save currentLimit: %s", esp_err_to_name(err)); cJSON_Delete(json); httpd_resp_send_err(req, HTTPD_500_INTERNAL_SERVER_ERROR, "Failed to save setting"); return ESP_FAIL; } ESP_LOGI(TAG, "Updated loadBalancingCurrentLimit to: %d", currentLimit); } cJSON_Delete(json); httpd_resp_sendstr(req, "Load balancing settings updated successfully"); return ESP_OK; } // Registro dos handlers na API HTTP void register_loadbalancing_settings_handlers(httpd_handle_t server, void *ctx) { // GET httpd_uri_t get_uri = { .uri = "/api/v1/config/loadbalancing", .method = HTTP_GET, .handler = loadbalancing_config_get_handler, .user_ctx = ctx }; httpd_register_uri_handler(server, &get_uri); // POST httpd_uri_t post_uri = { .uri = "/api/v1/config/loadbalancing", .method = HTTP_POST, .handler = loadbalancing_config_post_handler, .user_ctx = ctx }; httpd_register_uri_handler(server, &post_uri); } // === Fim de: components/rest_api/src/loadbalancing_settings_api.c === // === Início de: components/rest_api/src/evse_settings_api.c === // ========================= // evse_settings_api.c // ========================= #include "evse_settings_api.h" #include "evse_api.h" #include "esp_log.h" #include "cJSON.h" static const char *TAG = "evse_settings_api"; static esp_err_t config_settings_get_handler(httpd_req_t *req) { httpd_resp_set_type(req, "application/json"); cJSON *config = cJSON_CreateObject(); cJSON_AddNumberToObject(config, "currentLimit", evse_get_max_charging_current()); cJSON_AddNumberToObject(config, "temperatureLimit", evse_get_temp_threshold()); const char *json_str = cJSON_Print(config); httpd_resp_sendstr(req, json_str); free((void *)json_str); cJSON_Delete(config); return ESP_OK; } static esp_err_t config_settings_post_handler(httpd_req_t *req) { char buf[512]; int len = httpd_req_recv(req, buf, sizeof(buf) - 1); if (len <= 0) { httpd_resp_send_err(req, HTTPD_400_BAD_REQUEST, "Empty body"); return ESP_FAIL; } buf[len] = '\0'; cJSON *json = cJSON_Parse(buf); if (!json) { httpd_resp_send_err(req, HTTPD_400_BAD_REQUEST, "Invalid JSON"); return ESP_FAIL; } cJSON *current = cJSON_GetObjectItem(json, "currentLimit"); if (current) evse_set_max_charging_current(current->valueint); cJSON *temp = cJSON_GetObjectItem(json, "temperatureLimit"); if (temp) evse_set_temp_threshold(temp->valueint); cJSON_Delete(json); httpd_resp_sendstr(req, "Configurações atualizadas com sucesso"); return ESP_OK; } void register_evse_settings_handlers(httpd_handle_t server, void *ctx) { httpd_uri_t get_uri = { .uri = "/api/v1/config/settings", .method = HTTP_GET, .handler = config_settings_get_handler, .user_ctx = ctx }; httpd_register_uri_handler(server, &get_uri); httpd_uri_t post_uri = { .uri = "/api/v1/config/settings", .method = HTTP_POST, .handler = config_settings_post_handler, .user_ctx = ctx }; httpd_register_uri_handler(server, &post_uri); } // === Fim de: components/rest_api/src/evse_settings_api.c === // === Início de: components/rest_api/include/dashboard_api.h === #pragma once #ifdef __cplusplus extern "C" { #endif #include "esp_http_server.h" /** * @brief Registra o handler da dashboard (status geral do sistema) */ void register_dashboard_handlers(httpd_handle_t server, void *ctx); #ifdef __cplusplus } #endif // === Fim de: components/rest_api/include/dashboard_api.h === // === Início de: components/rest_api/include/static_file_api.h === #pragma once #ifdef __cplusplus extern "C" { #endif #include "esp_http_server.h" /** * @brief Registra o handler para servir arquivos estáticos da web (SPA) */ void register_static_file_handlers(httpd_handle_t server, void *ctx); #ifdef __cplusplus } #endif // === Fim de: components/rest_api/include/static_file_api.h === // === Início de: components/rest_api/include/network_api.h === #pragma once #ifdef __cplusplus extern "C" { #endif #include "esp_http_server.h" /** * @brief Registra os handlers de configuração Wi-Fi e MQTT */ void register_network_handlers(httpd_handle_t server, void *ctx); #ifdef __cplusplus } #endif // === Fim de: components/rest_api/include/network_api.h === // === Início de: components/rest_api/include/auth_api.h === #pragma once #ifdef __cplusplus extern "C" { #endif #include "esp_http_server.h" /** * @brief Registra os handlers de autenticação e gerenciamento de usuários */ void register_auth_handlers(httpd_handle_t server, void *ctx); #ifdef __cplusplus } #endif // === Fim de: components/rest_api/include/auth_api.h === // === Início de: components/rest_api/include/loadbalancing_settings_api.h === // ========================= // loadbalancing_settings_api.h // ========================= #ifndef LOADBALANCING_SETTINGS_API_H #define LOADBALANCING_SETTINGS_API_H #include "esp_err.h" #include "esp_http_server.h" // Função para registrar os manipuladores de URI para as configurações de load balancing e solar void register_loadbalancing_settings_handlers(httpd_handle_t server, void *ctx); #endif // LOADBALANCING_SETTINGS_API_H // === Fim de: components/rest_api/include/loadbalancing_settings_api.h === // === Início de: components/rest_api/include/rest_main.h === #pragma once #include #include #define SCRATCH_BUFSIZE (10240) typedef struct rest_server_context { char base_path[ESP_VFS_PATH_MAX + 1]; char scratch[SCRATCH_BUFSIZE]; } rest_server_context_t; esp_err_t rest_server_init(const char *base_path); // === Fim de: components/rest_api/include/rest_main.h === // === Início de: components/rest_api/include/meters_settings_api.h === // ========================= // meters_settings_api.h // ========================= #ifndef METERS_SETTINGS_API_H #define METERS_SETTINGS_API_H #include "esp_err.h" #include "esp_http_server.h" // Função para registrar os manipuladores de URI para as configurações dos contadores void register_meters_settings_handlers(httpd_handle_t server, void *ctx); #endif // METERS_SETTINGS_API_H // === Fim de: components/rest_api/include/meters_settings_api.h === // === Início de: components/rest_api/include/ocpp_api.h === #pragma once #ifdef __cplusplus extern "C" { #endif #include "esp_http_server.h" /** * @brief Registra os handlers da configuração e status do OCPP */ void register_ocpp_handlers(httpd_handle_t server, void *ctx); #ifdef __cplusplus } #endif // === Fim de: components/rest_api/include/ocpp_api.h === // === Início de: components/rest_api/include/evse_settings_api.h === #pragma once #ifdef __cplusplus extern "C" { #endif #include "esp_http_server.h" /** * @brief Registra os handlers de configuração elétrica e limites de carregamento */ void register_evse_settings_handlers(httpd_handle_t server, void *ctx); #ifdef __cplusplus } #endif // === Fim de: components/rest_api/include/evse_settings_api.h === // === Início de: components/network/src/wifi_2.c === #include #include "freertos/FreeRTOS.h" #include "freertos/event_groups.h" #include "esp_log.h" #include "esp_wifi.h" #include "esp_event.h" #include "esp_netif.h" #include "esp_mac.h" #include "nvs.h" #include "mdns.h" #include "wifi.h" #include "nvs_flash.h" #include #define WIFI_STORAGE_NAMESPACE "wifi_config" #define TAG "wifi" #define AP_SSID "plx-%02x%02x%02x" #define MDNS_HOSTNAME "plx%02x" #define NVS_NAMESPACE "wifi" static nvs_handle_t nvs; static esp_netif_t *ap_netif; EventGroupHandle_t wifi_event_group; // // Event handler para modo AP // static void event_handler(void *arg, esp_event_base_t event_base, int32_t event_id, void *event_data) { if (event_base == WIFI_EVENT) { switch (event_id) { case WIFI_EVENT_AP_STACONNECTED: { wifi_event_ap_staconnected_t *event = event_data; ESP_LOGI(TAG, "STA " MACSTR " conectou, AID=%d", MAC2STR(event->mac), event->aid); xEventGroupSetBits(wifi_event_group, WIFI_AP_CONNECTED_BIT); break; } case WIFI_EVENT_AP_STADISCONNECTED: { wifi_event_ap_stadisconnected_t *event = event_data; ESP_LOGI(TAG, "STA " MACSTR " desconectou, AID=%d", MAC2STR(event->mac), event->aid); xEventGroupClearBits(wifi_event_group, WIFI_AP_CONNECTED_BIT); break; } } } } // // Iniciar o AP com SSID baseado no MAC // void wifi_ap_start(void) { ESP_LOGI(TAG, "Iniciando AP"); ESP_ERROR_CHECK(esp_wifi_stop()); wifi_config_t ap_config = { .ap = { .ssid = "", .ssid_len = 0, .channel = 1, .password = "", .max_connection = 4, .authmode = WIFI_AUTH_OPEN } }; uint8_t mac[6]; ESP_ERROR_CHECK(esp_read_mac(mac, ESP_MAC_WIFI_SOFTAP)); snprintf((char *)ap_config.ap.ssid, sizeof(ap_config.ap.ssid), AP_SSID, mac[3], mac[4], mac[5]); ESP_ERROR_CHECK(esp_wifi_set_mode(WIFI_MODE_AP)); ESP_ERROR_CHECK(esp_wifi_set_config(WIFI_IF_AP, &ap_config)); ESP_ERROR_CHECK(esp_wifi_start()); xEventGroupSetBits(wifi_event_group, WIFI_AP_MODE_BIT); } // // Inicializar Wi-Fi em modo AP // void wifi_ini(void) { ESP_LOGI(TAG, "Inicializando Wi-Fi (modo AP)"); ESP_ERROR_CHECK(nvs_open(NVS_NAMESPACE, NVS_READWRITE, &nvs)); wifi_event_group = xEventGroupCreate(); ESP_ERROR_CHECK(esp_netif_init()); /* if (!esp_event_loop_is_running()) { ESP_ERROR_CHECK(esp_event_loop_create_default()); }*/ ap_netif = esp_netif_create_default_wifi_ap(); wifi_init_config_t cfg = WIFI_INIT_CONFIG_DEFAULT(); ESP_ERROR_CHECK(esp_wifi_init(&cfg)); ESP_ERROR_CHECK(esp_event_handler_register(WIFI_EVENT, ESP_EVENT_ANY_ID, &event_handler, NULL)); uint8_t mac[6]; ESP_ERROR_CHECK(esp_read_mac(mac, ESP_MAC_WIFI_SOFTAP)); char hostname[16]; snprintf(hostname, sizeof(hostname), MDNS_HOSTNAME, mac[5]); ESP_ERROR_CHECK(mdns_init()); ESP_ERROR_CHECK(mdns_hostname_set(hostname)); ESP_ERROR_CHECK(mdns_instance_name_set("EVSE Controller")); wifi_ap_start(); } esp_netif_t *wifi_get_ap_netif(void) { return ap_netif; } esp_err_t wifi_set_config(bool enabled, const char *ssid, const char *password) { return ESP_OK; } void wifi_get_ssid(char *value) { // Your implementation here } void wifi_get_password(char *value) { // Your implementation here } bool wifi_get_enabled(void) { return true; } // === Fim de: components/network/src/wifi_2.c === // === Início de: components/network/src/wifi.c === #include #include "freertos/FreeRTOS.h" #include "freertos/task.h" #include "freertos/event_groups.h" #include "esp_log.h" #include "esp_wifi.h" #include "esp_event.h" #include "esp_netif.h" #include "esp_mac.h" #include "nvs.h" #include "mdns.h" #include "wifi.h" #define AP_SSID "plx-%02x%02x%02x" #define MDNS_SSID "plx%02x" #define NVS_NAMESPACE "wifi" #define NVS_ENABLED "enabled" #define NVS_SSID "ssid" #define NVS_PASSWORD "password" static const char *TAG = "wifi"; static nvs_handle_t nvs; static esp_netif_t *sta_netif; static esp_netif_t *ap_netif; EventGroupHandle_t wifi_event_group; static void event_handler(void *arg, esp_event_base_t event_base, int32_t event_id, void *event_data) { ESP_LOGI(TAG, "event_handler"); if (event_base == WIFI_EVENT) { if (event_id == WIFI_EVENT_AP_STACONNECTED) { ESP_LOGI(TAG, "STA connected"); wifi_event_ap_staconnected_t *event = (wifi_event_ap_staconnected_t *)event_data; ESP_LOGI(TAG, "WiFi AP " MACSTR " join, AID=%d", MAC2STR(event->mac), event->aid); xEventGroupClearBits(wifi_event_group, WIFI_AP_DISCONNECTED_BIT); xEventGroupSetBits(wifi_event_group, WIFI_AP_CONNECTED_BIT); } if (event_id == WIFI_EVENT_AP_STADISCONNECTED) { ESP_LOGI(TAG, "AP STA disconnected"); wifi_event_ap_stadisconnected_t *event = (wifi_event_ap_stadisconnected_t *)event_data; ESP_LOGI(TAG, "WiFi AP " MACSTR " leave, AID=%d", MAC2STR(event->mac), event->aid); xEventGroupClearBits(wifi_event_group, WIFI_AP_CONNECTED_BIT); xEventGroupSetBits(wifi_event_group, WIFI_AP_DISCONNECTED_BIT); } if (event_id == WIFI_EVENT_STA_DISCONNECTED) { ESP_LOGI(TAG, "STA disconnected"); xEventGroupClearBits(wifi_event_group, WIFI_STA_CONNECTED_BIT); xEventGroupSetBits(wifi_event_group, WIFI_STA_DISCONNECTED_BIT); esp_wifi_connect(); } if (event_id == WIFI_EVENT_STA_START) { ESP_LOGI(TAG, "STA start"); esp_wifi_connect(); } } else if (event_base == IP_EVENT) { ESP_LOGI(TAG, "event_base == IP_EVENT"); if (event_id == IP_EVENT_STA_GOT_IP || event_id == IP_EVENT_GOT_IP6) { if (event_id == IP_EVENT_STA_GOT_IP) { ip_event_got_ip_t *event = (ip_event_got_ip_t *)event_data; ESP_LOGI(TAG, "WiFi STA got ip: " IPSTR, IP2STR(&event->ip_info.ip)); } else { ip_event_got_ip6_t *event = (ip_event_got_ip6_t *)event_data; ESP_LOGI(TAG, "WiFi STA got ip6: " IPV6STR, IPV62STR(event->ip6_info.ip)); } xEventGroupClearBits(wifi_event_group, WIFI_STA_DISCONNECTED_BIT); xEventGroupSetBits(wifi_event_group, WIFI_STA_CONNECTED_BIT); } } } static void sta_set_config(void) { ESP_LOGI(TAG, "sta_set_config"); if (wifi_get_enabled()) { wifi_config_t wifi_config = { .sta = { .pmf_cfg = { .capable = true, .required = false}}}; wifi_get_ssid((char *)wifi_config.sta.ssid); wifi_get_password((char *)wifi_config.sta.password); esp_wifi_set_mode(WIFI_MODE_STA); esp_wifi_set_config(ESP_IF_WIFI_STA, &wifi_config); } } static void ap_set_config(void) { ESP_LOGI(TAG, "ap_set_config"); wifi_config_t wifi_ap_config = { .ap = { .max_connection = 1, .authmode = WIFI_AUTH_OPEN}}; uint8_t mac[6]; esp_wifi_get_mac(ESP_IF_WIFI_AP, mac); sprintf((char *)wifi_ap_config.ap.ssid, AP_SSID, mac[3], mac[4], mac[5]); wifi_config_t wifi_sta_config = {0}; esp_wifi_set_mode(WIFI_MODE_APSTA); esp_wifi_set_config(ESP_IF_WIFI_AP, &wifi_ap_config); esp_wifi_set_config(ESP_IF_WIFI_STA, &wifi_sta_config); } static void sta_try_start(void) { ESP_LOGI(TAG, "sta_try_start"); sta_set_config(); if (wifi_get_enabled()) { ESP_LOGI(TAG, "Starting STA"); esp_wifi_start(); xEventGroupSetBits(wifi_event_group, WIFI_STA_MODE_BIT); } } void wifi_ini(void) { ESP_LOGI(TAG, "Wifi init"); ESP_ERROR_CHECK(nvs_open(NVS_NAMESPACE, NVS_READWRITE, &nvs)); wifi_event_group = xEventGroupCreate(); wifi_init_config_t cfg = WIFI_INIT_CONFIG_DEFAULT(); ap_netif = esp_netif_create_default_wifi_ap(); sta_netif = esp_netif_create_default_wifi_sta(); ESP_ERROR_CHECK(esp_wifi_init(&cfg)); ESP_ERROR_CHECK(esp_event_handler_register(WIFI_EVENT, ESP_EVENT_ANY_ID, &event_handler, NULL)); ESP_ERROR_CHECK(esp_event_handler_register(IP_EVENT, ESP_EVENT_ANY_ID, &event_handler, NULL)); char chargeid[6]; uint8_t mac[6]; esp_wifi_get_mac(ESP_IF_WIFI_AP, mac); sprintf((char *)chargeid, MDNS_SSID, mac[5]); ESP_ERROR_CHECK(mdns_init()); ESP_ERROR_CHECK(mdns_hostname_set(chargeid)); ESP_ERROR_CHECK(mdns_instance_name_set("EVSE controller")); sta_try_start(); } esp_netif_t *wifi_get_sta_netif(void) { return sta_netif; } esp_netif_t *wifi_get_ap_netif(void) { return ap_netif; } esp_err_t wifi_set_config(bool enabled, const char *ssid, const char *password) { ESP_LOGI(TAG, "Wifi set config"); if (enabled) { if (ssid == NULL || strlen(ssid) == 0) { size_t len = 0; nvs_get_str(nvs, NVS_SSID, NULL, &len); if (len <= 1) { ESP_LOGE(TAG, "Required SSID"); return ESP_ERR_INVALID_ARG; } } } if (ssid != NULL && strlen(ssid) > 32) { ESP_LOGE(TAG, "SSID out of range"); return ESP_ERR_INVALID_ARG; } if (password != NULL && strlen(password) > 32) { ESP_LOGE(TAG, "Password out of range"); return ESP_ERR_INVALID_ARG; } nvs_set_u8(nvs, NVS_ENABLED, enabled); if (ssid != NULL) { nvs_set_str(nvs, NVS_SSID, ssid); } if (password != NULL) { nvs_set_str(nvs, NVS_PASSWORD, password); } nvs_commit(nvs); ESP_LOGI(TAG, "Stopping AP/STA"); xEventGroupClearBits(wifi_event_group, WIFI_AP_MODE_BIT | WIFI_STA_MODE_BIT); esp_wifi_stop(); sta_try_start(); return ESP_OK; } uint16_t wifi_scan(wifi_scan_ap_t *scan_aps) { ESP_LOGI(TAG, "wifi_scan"); uint16_t number = WIFI_SCAN_SCAN_LIST_SIZE; wifi_ap_record_t ap_info[WIFI_SCAN_SCAN_LIST_SIZE]; uint16_t ap_count = 0; memset(ap_info, 0, sizeof(ap_info)); esp_wifi_scan_start(NULL, true); esp_wifi_scan_get_ap_records(&number, ap_info); esp_wifi_scan_get_ap_num(&ap_count); ESP_LOGI(TAG, "wifi_scan --- %d", ap_count); for (int i = 0; (i < WIFI_SCAN_SCAN_LIST_SIZE) && (i < ap_count); i++) { ESP_LOGI(TAG, "wifi_scan ---"); strcpy(scan_aps[i].ssid, (const char *)ap_info[i].ssid); scan_aps[i].rssi = ap_info[i].rssi; scan_aps[i].auth = ap_info[i].authmode != WIFI_AUTH_OPEN; } return ap_count; } bool wifi_get_enabled(void) { uint8_t value = false; nvs_get_u8(nvs, NVS_ENABLED, &value); return value; } void wifi_get_ssid(char *value) { size_t len = 32; value[0] = '\0'; nvs_get_str(nvs, NVS_SSID, value, &len); } void wifi_get_password(char *value) { size_t len = 64; value[0] = '\0'; nvs_get_str(nvs, NVS_PASSWORD, value, &len); } void wifi_ap_start(void) { ESP_LOGI(TAG, "Starting AP"); xEventGroupClearBits(wifi_event_group, WIFI_STA_MODE_BIT); esp_wifi_stop(); ap_set_config(); esp_wifi_start(); xEventGroupSetBits(wifi_event_group, WIFI_AP_MODE_BIT); } void wifi_ap_stop(void) { ESP_LOGI(TAG, "Stopping AP"); xEventGroupClearBits(wifi_event_group, WIFI_AP_MODE_BIT); esp_wifi_stop(); sta_try_start(); } bool wifi_is_ap(void) { wifi_mode_t mode; esp_wifi_get_mode(&mode); return mode == WIFI_MODE_APSTA; } // === Fim de: components/network/src/wifi.c === // === Início de: components/network/include/wifi.h === #ifndef WIFI_H_ #define WIFI_H_ #include #include "freertos/FreeRTOS.h" #include "freertos/event_groups.h" #include "esp_err.h" #include "esp_netif.h" #define WIFI_SCAN_SCAN_LIST_SIZE 10 #define WIFI_AP_CONNECTED_BIT BIT0 #define WIFI_AP_DISCONNECTED_BIT BIT1 #define WIFI_STA_CONNECTED_BIT BIT2 #define WIFI_STA_DISCONNECTED_BIT BIT3 #define WIFI_AP_MODE_BIT BIT4 #define WIFI_STA_MODE_BIT BIT5 typedef struct { char ssid[32]; int rssi; bool auth; } wifi_scan_ap_t; /** * @brief WiFi event group WIFI_AP_CONNECTED_BIT | WIFI_AP_DISCONNECTED_BIT | WIFI_STA_CONNECTED_BIT | WIFI_STA_DISCONNECTED_BIT | WIFI_AP_MODE_BIT | WIFI_STA_MODE_BIT * */ extern EventGroupHandle_t wifi_event_group; /** * @brief Initialize WiFi * */ void wifi_ini(void); /** * @brief Return WiFi STA network interface * * @return esp_netif_t* */ esp_netif_t* wifi_get_sta_netif(void); /** * @brief Return WiFi AP network interface * * @return esp_netif_t* */ esp_netif_t* wifi_get_ap_netif(void); /** * @brief Set WiFi config * * @param enabled * @param ssid NULL value will be skiped * @param password NULL value will be skiped * @return esp_err_t */ esp_err_t wifi_set_config(bool enabled, const char* ssid, const char* password); /** * @brief Get WiFi STA enabled, stored in NVS * * @return true * @return false */ bool wifi_get_enabled(void); /** * @brief Scan for AP * * @param scan_aps array with length WIFI_SCAN_SCAN_LIST_SIZE * @return uint16_t number of available AP */ uint16_t wifi_scan(wifi_scan_ap_t *scan_aps); /** * @brief Get WiFi STA ssid, string length 32, stored in NVS * * @param value */ void wifi_get_ssid(char* value); /** * @brief Get WiFi STA password, string length 32, stored in NVS * * @param value */ void wifi_get_password(char* value); /** * @brief Start WiFi AP mode * */ void wifi_ap_start(void); /** * @brief Stop WiFi AP mode * */ void wifi_ap_stop(void); #endif /* WIFI_H_ */ // === Fim de: components/network/include/wifi.h === // === Início de: components/peripherals/src/ac_relay.c === #include "esp_log.h" #include "driver/gpio.h" #include "ac_relay.h" #include "board_config.h" static const char* TAG = "ac_relay"; /** * @brief Initialize the AC relay GPIO. * * Configures the specified GPIO pin as an output and sets its initial state to OFF (low). */ void ac_relay_init(void) { gpio_config_t conf = { .pin_bit_mask = BIT64(board_config.ac_relay_gpio), .mode = GPIO_MODE_OUTPUT, .pull_down_en = GPIO_PULLDOWN_DISABLE, ///< Disabled unless required .pull_up_en = GPIO_PULLUP_DISABLE, .intr_type = GPIO_INTR_DISABLE }; esp_err_t ret = gpio_config(&conf); if (ret != ESP_OK) { ESP_LOGE(TAG, "Failed to configure GPIO (error: %s)", esp_err_to_name(ret)); return; } gpio_set_level(board_config.ac_relay_gpio, false); ///< Ensure relay starts OFF ESP_LOGI(TAG, "AC relay initialized. Pin: %d", board_config.ac_relay_gpio); } /** * @brief Set the state of the AC relay. * * @param state True to turn the relay ON, False to turn it OFF. */ void ac_relay_set_state(bool state) { ESP_LOGI(TAG, "Setting AC relay state: Pin: %d, State: %d", board_config.ac_relay_gpio, state); esp_err_t ret = gpio_set_level(board_config.ac_relay_gpio, state); if (ret != ESP_OK) { ESP_LOGE(TAG, "Failed to set GPIO level (error: %s)", esp_err_to_name(ret)); } } /** * @brief Get the current state of the AC relay. * * @return true if the relay is ON, false if OFF. */ bool ac_relay_get_state(void) { int level = gpio_get_level(board_config.ac_relay_gpio); ESP_LOGD(TAG, "Current AC relay state: Pin: %d, State: %d", board_config.ac_relay_gpio, level); return level; } // === Fim de: components/peripherals/src/ac_relay.c === // === Início de: components/peripherals/src/ntc_sensor.c === #include #include #include "freertos/task.h" #include "esp_log.h" #include "ntc_sensor.h" #include "ntc_driver.h" #include "adc.h" static const char *TAG = "temp_sensor"; #define MEASURE_PERIOD 15000 // 10s static float temp = 0.0; static ntc_device_handle_t ntc = NULL; static portMUX_TYPE temp_mux = portMUX_INITIALIZER_UNLOCKED; static void ntc_sensor_task_func(void *param) { float t; while (true) { if (ntc_dev_get_temperature(ntc, &t) == ESP_OK) { portENTER_CRITICAL(&temp_mux); temp = t; portEXIT_CRITICAL(&temp_mux); } vTaskDelay(pdMS_TO_TICKS(MEASURE_PERIOD)); } } float ntc_temp_sensor(void) { float t; portENTER_CRITICAL(&temp_mux); t = temp; portEXIT_CRITICAL(&temp_mux); return t; } void ntc_sensor_init(void) { ESP_LOGI(TAG, "ntc_sensor_init"); // Select the NTC sensor and initialize the hardware parameters ntc_config_t ntc_config = { .b_value = 3950, .r25_ohm = 10000, .fixed_ohm = 4700, .vdd_mv = 3300, .circuit_mode = CIRCUIT_MODE_NTC_GND, .atten = ADC_ATTEN_DB_12, .channel = ADC_CHANNEL_0, .unit = ADC_UNIT_1}; // Create the NTC Driver and Init ADC // ntc_device_handle_t ntc = NULL; // adc_oneshot_unit_handle_t adc_handle = NULL; ESP_ERROR_CHECK(ntc_dev_create(&ntc_config, &ntc, &adc_handle)); ESP_ERROR_CHECK(ntc_dev_get_adc_handle(ntc, &adc_handle)); xTaskCreate(ntc_sensor_task_func, "ntc_sensor_task", 5 * 1024, NULL, 3, NULL); } // === Fim de: components/peripherals/src/ntc_sensor.c === // === Início de: components/peripherals/src/proximity.c === #include "esp_log.h" #include "proximity.h" #include "board_config.h" #include "adc.h" static const char *TAG = "proximity"; void proximity_init(void) { if (board_config.proximity) { adc_oneshot_chan_cfg_t config = { .bitwidth = ADC_BITWIDTH_DEFAULT, .atten = ADC_ATTEN_DB_12}; ESP_ERROR_CHECK(adc_oneshot_config_channel(adc_handle, board_config.proximity_adc_channel, &config)); } } uint8_t proximity_get_max_current(void) { int voltage; adc_oneshot_read(adc_handle, board_config.proximity_adc_channel, &voltage); adc_cali_raw_to_voltage(adc_cali_handle, voltage, &voltage); ESP_LOGI(TAG, "Measured: %dmV", voltage); uint8_t current; if (voltage >= board_config.proximity_down_threshold_8) { current = 8; } else if (voltage >= board_config.proximity_down_threshold_10) { current = 10; } else if (voltage >= board_config.proximity_down_threshold_13) { current = 13; } else if (voltage >= board_config.proximity_down_threshold_20) { current = 20; } else if (voltage >= board_config.proximity_down_threshold_25) { current = 25; } else if (voltage >= board_config.proximity_down_threshold_32) { current = 32; } else { current = 32; } ESP_LOGI(TAG, "Max current: %dA", current); return current; } // === Fim de: components/peripherals/src/proximity.c === // === Início de: components/peripherals/src/buzzer.c === #include "freertos/FreeRTOS.h" #include "freertos/task.h" #include "freertos/queue.h" #include "driver/gpio.h" #include "board_config.h" #include "buzzer.h" #include "evse_api.h" static gpio_num_t buzzer_gpio = GPIO_NUM_NC; static evse_state_t last_buzzer_state = -1; static QueueHandle_t buzzer_queue = NULL; void buzzer_on(void) { if (buzzer_gpio != GPIO_NUM_NC) gpio_set_level(buzzer_gpio, 1); } void buzzer_off(void) { if (buzzer_gpio != GPIO_NUM_NC) gpio_set_level(buzzer_gpio, 0); } // ---------------------- // Padrões de Buzzer // ---------------------- typedef struct { uint16_t on_ms; uint16_t off_ms; } buzzer_pattern_step_t; typedef enum { BUZZER_PATTERN_NONE = 0, BUZZER_PATTERN_PLUGGED, BUZZER_PATTERN_UNPLUGGED, BUZZER_PATTERN_CHARGING, } buzzer_pattern_id_t; static const buzzer_pattern_step_t pattern_plugged[] = { {100, 100}, {200, 0} }; static const buzzer_pattern_step_t pattern_unplugged[] = { {150, 150}, {150, 150}, {150, 0} }; static const buzzer_pattern_step_t pattern_charging[] = { {80, 150}, {100, 120}, {120, 100}, {140, 0} }; // ---------------------- // Executor de padrões // ---------------------- static void buzzer_execute_pattern(buzzer_pattern_id_t pattern_id) { const buzzer_pattern_step_t *pattern = NULL; size_t length = 0; switch (pattern_id) { case BUZZER_PATTERN_PLUGGED: pattern = pattern_plugged; length = sizeof(pattern_plugged) / sizeof(pattern_plugged[0]); break; case BUZZER_PATTERN_UNPLUGGED: pattern = pattern_unplugged; length = sizeof(pattern_unplugged) / sizeof(pattern_unplugged[0]); break; case BUZZER_PATTERN_CHARGING: pattern = pattern_charging; length = sizeof(pattern_charging) / sizeof(pattern_charging[0]); break; default: return; } for (size_t i = 0; i < length; i++) { buzzer_on(); vTaskDelay(pdMS_TO_TICKS(pattern[i].on_ms)); buzzer_off(); if (pattern[i].off_ms > 0) vTaskDelay(pdMS_TO_TICKS(pattern[i].off_ms)); } } // ---------------------- // Task que toca o buzzer // ---------------------- static void buzzer_worker_task(void *arg) { buzzer_pattern_id_t pattern_id; while (true) { if (xQueueReceive(buzzer_queue, &pattern_id, portMAX_DELAY)) { //buzzer_execute_pattern(pattern_id); } } } // ---------------------- // Task de monitoramento // ---------------------- static void buzzer_monitor_task(void *arg) { while (true) { evse_state_t current = evse_get_state(); if (current != last_buzzer_state) { buzzer_pattern_id_t pattern_id = BUZZER_PATTERN_NONE; switch (current) { case EVSE_STATE_A: if (last_buzzer_state != EVSE_STATE_A) pattern_id = BUZZER_PATTERN_UNPLUGGED; break; case EVSE_STATE_B1: case EVSE_STATE_B2: if (last_buzzer_state != EVSE_STATE_B1 && last_buzzer_state != EVSE_STATE_B2) pattern_id = BUZZER_PATTERN_PLUGGED; break; case EVSE_STATE_C2: case EVSE_STATE_D2: if (last_buzzer_state != EVSE_STATE_C2 && last_buzzer_state != EVSE_STATE_D2) pattern_id = BUZZER_PATTERN_CHARGING; break; default: break; } if (pattern_id != BUZZER_PATTERN_NONE) { xQueueSend(buzzer_queue, &pattern_id, 0); // Não bloqueia } last_buzzer_state = current; } vTaskDelay(pdMS_TO_TICKS(100)); } } // ---------------------- // Inicialização // ---------------------- void buzzer_init(void) { if (board_config.buzzer) { buzzer_gpio = board_config.buzzer_gpio; gpio_config_t io_conf = { .pin_bit_mask = BIT64(buzzer_gpio), .mode = GPIO_MODE_OUTPUT, .pull_down_en = GPIO_PULLDOWN_ENABLE, .pull_up_en = GPIO_PULLUP_DISABLE, .intr_type = GPIO_INTR_DISABLE }; gpio_config(&io_conf); gpio_set_level(buzzer_gpio, 0); } buzzer_queue = xQueueCreate(4, sizeof(buzzer_pattern_id_t)); xTaskCreate(buzzer_monitor_task, "buzzer_monitor", 2048, NULL, 3, NULL); xTaskCreate(buzzer_worker_task, "buzzer_worker", 2048, NULL, 3, NULL); } // === Fim de: components/peripherals/src/buzzer.c === // === Início de: components/peripherals/src/ds18x20.h === /* * Copyright (c) 2016 Grzegorz Hetman * Copyright (c) 2016 Alex Stewart * Copyright (c) 2018 Ruslan V. Uss * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. Neither the name of the copyright holder nor the names of itscontributors * may be used to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef _DS18X20_H #define _DS18X20_H #include #include "onewire.h" typedef onewire_addr_t ds18x20_addr_t; /** An address value which can be used to indicate "any device on the bus" */ #define DS18X20_ANY ONEWIRE_NONE /** Family ID (lower address byte) of DS18B20 sensors */ #define DS18B20_FAMILY_ID 0x28 /** Family ID (lower address byte) of DS18S20 sensors */ #define DS18S20_FAMILY_ID 0x10 /** * @brief Find the addresses of all ds18x20 devices on the bus. * * Scans the bus for all devices and places their addresses in the supplied * array. If there are more than `addr_count` devices on the bus, only the * first `addr_count` are recorded. * * @param pin The GPIO pin connected to the ds18x20 bus * @param addr_list A pointer to an array of ::ds18x20_addr_t values. * This will be populated with the addresses of the found * devices. * @param addr_count Number of slots in the `addr_list` array. At most this * many addresses will be returned. * @param found The number of devices found. Note that this may be less * than, equal to, or more than `addr_count`, depending on * how many ds18x20 devices are attached to the bus. * * @returns `ESP_OK` if the command was successfully issued */ esp_err_t ds18x20_scan_devices(gpio_num_t pin, ds18x20_addr_t *addr_list, size_t addr_count, size_t *found); /** * @brief Tell one or more sensors to perform a temperature measurement and * conversion (CONVERT_T) operation. * * This operation can take up to 750ms to complete. * * If `wait=true`, this routine will automatically drive the pin high for the * necessary 750ms after issuing the command to ensure parasitically-powered * devices have enough power to perform the conversion operation (for * non-parasitically-powered devices, this is not necessary but does not * hurt). If `wait=false`, this routine will drive the pin high, but will * then return immediately. It is up to the caller to wait the requisite time * and then depower the bus using onewire_depower() or by issuing another * command once conversion is done. * * @param pin The GPIO pin connected to the ds18x20 device * @param addr The 64-bit address of the device on the bus. This can be set * to ::DS18X20_ANY to send the command to all devices on the bus * at the same time. * @param wait Whether to wait for the necessary 750ms for the ds18x20 to * finish performing the conversion before returning to the * caller (You will normally want to do this). * * @returns `ESP_OK` if the command was successfully issued */ esp_err_t ds18x20_measure(gpio_num_t pin, ds18x20_addr_t addr, bool wait); /** * @brief Read the value from the last CONVERT_T operation. * * This should be called after ds18x20_measure() to fetch the result of the * temperature measurement. * * @param pin The GPIO pin connected to the ds18x20 device * @param addr The 64-bit address of the device to read. This can be set * to ::DS18X20_ANY to read any device on the bus (but note * that this will only work if there is exactly one device * connected, or they will corrupt each others' transmissions) * @param temperature The temperature in degrees Celsius * * @returns `ESP_OK` if the command was successfully issued */ esp_err_t ds18x20_read_temperature(gpio_num_t pin, ds18x20_addr_t addr, int16_t *temperature); /** * @brief Read the value from the last CONVERT_T operation (ds18b20 version). * * This should be called after ds18x20_measure() to fetch the result of the * temperature measurement. * * @param pin The GPIO pin connected to the ds18x20 device * @param addr The 64-bit address of the device to read. This can be set * to ::DS18X20_ANY to read any device on the bus (but note * that this will only work if there is exactly one device * connected, or they will corrupt each others' transmissions) * @param temperature The temperature in degrees Celsius * * @returns `ESP_OK` if the command was successfully issued */ esp_err_t ds18b20_read_temperature(gpio_num_t pin, ds18x20_addr_t addr, int16_t *temperature); /** * @brief Read the value from the last CONVERT_T operation (ds18s20 version). * * This should be called after ds18x20_measure() to fetch the result of the * temperature measurement. * * @param pin The GPIO pin connected to the ds18x20 device * @param addr The 64-bit address of the device to read. This can be set * to ::DS18X20_ANY to read any device on the bus (but note * that this will only work if there is exactly one device * connected, or they will corrupt each others' transmissions) * @param temperature The temperature in degrees Celsius * * @returns `ESP_OK` if the command was successfully issued */ esp_err_t ds18s20_read_temperature(gpio_num_t pin, ds18x20_addr_t addr, int16_t *temperature); /** * @brief Read the value from the last CONVERT_T operation for multiple devices. * * This should be called after ds18x20_measure() to fetch the result of the * temperature measurement. * * @param pin The GPIO pin connected to the ds18x20 bus * @param addr_list A list of addresses for devices to read. * @param addr_count The number of entries in `addr_list`. * @param result_list An array of int16_ts to hold the returned temperature * values. It should have at least `addr_count` entries. * * @returns `ESP_OK` if all temperatures were fetched successfully */ esp_err_t ds18x20_read_temp_multi(gpio_num_t pin, ds18x20_addr_t *addr_list, size_t addr_count, int16_t *result_list); /** Perform a ds18x20_measure() followed by ds18s20_read_temperature() * * @param pin The GPIO pin connected to the ds18s20 device * @param addr The 64-bit address of the device to read. This can be set * to ::DS18X20_ANY to read any device on the bus (but note * that this will only work if there is exactly one device * connected, or they will corrupt each others' transmissions) * @param temperature The temperature in degrees Celsius */ esp_err_t ds18s20_measure_and_read(gpio_num_t pin, ds18x20_addr_t addr, int16_t *temperature); /** Perform a ds18x20_measure() followed by ds18b20_read_temperature() * * @param pin The GPIO pin connected to the ds18x20 device * @param addr The 64-bit address of the device to read. This can be set * to ::DS18X20_ANY to read any device on the bus (but note * that this will only work if there is exactly one device * connected, or they will corrupt each others' transmissions) * @param temperature The temperature in degrees Celsius */ esp_err_t ds18b20_measure_and_read(gpio_num_t pin, ds18x20_addr_t addr, int16_t *temperature); /** Perform a ds18x20_measure() followed by ds18x20_read_temperature() * * @param pin The GPIO pin connected to the ds18x20 device * @param addr The 64-bit address of the device to read. This can be set * to ::DS18X20_ANY to read any device on the bus (but note * that this will only work if there is exactly one device * connected, or they will corrupt each others' transmissions) * @param temperature The temperature in degrees Celsius */ esp_err_t ds18x20_measure_and_read(gpio_num_t pin, ds18x20_addr_t addr, int16_t *temperature); /** * @brief Perform a ds18x20_measure() followed by ds18x20_read_temp_multi() * * @param pin The GPIO pin connected to the ds18x20 bus * @param addr_list A list of addresses for devices to read. * @param addr_count The number of entries in `addr_list`. * @param result_list An array of int16_ts to hold the returned temperature * values. It should have at least `addr_count` entries. * * @returns `ESP_OK` if all temperatures were fetched successfully */ esp_err_t ds18x20_measure_and_read_multi(gpio_num_t pin, ds18x20_addr_t *addr_list, size_t addr_count, int16_t *result_list); /** * @brief Read the scratchpad data for a particular ds18x20 device. * * This is not generally necessary to do directly. It is done automatically * as part of ds18x20_read_temperature(). * * @param pin The GPIO pin connected to the ds18x20 device * @param addr The 64-bit address of the device to read. This can be set * to ::DS18X20_ANY to read any device on the bus (but note * that this will only work if there is exactly one device * connected, or they will corrupt each others' transmissions) * @param buffer An 8-byte buffer to hold the read data. * * @returns `ESP_OK` if the command was successfully issued */ esp_err_t ds18x20_read_scratchpad(gpio_num_t pin, ds18x20_addr_t addr, uint8_t *buffer); /** * @brief Write the scratchpad data for a particular ds18x20 device. * * @param pin The GPIO pin connected to the ds18x20 device * @param addr The 64-bit address of the device to write. This can be set * to ::DS18X20_ANY to read any device on the bus (but note * that this will only work if there is exactly one device * connected, or they will corrupt each others' transmissions) * @param buffer An 3-byte buffer to hold the data to write * * @returns `ESP_OK` if the command was successfully issued */ esp_err_t ds18x20_write_scratchpad(gpio_num_t pin, ds18x20_addr_t addr, uint8_t *buffer); /** * @brief Issue the copy scratchpad command, copying current scratchpad to * EEPROM. * * @param pin The GPIO pin connected to the ds18x20 device * @param addr The 64-bit address of the device to command. This can be set * to ::DS18X20_ANY to read any device on the bus (but note * that this will only work if there is exactly one device * connected, or they will corrupt each others' transmissions) * * @returns `ESP_OK` if the command was successfully issued */ esp_err_t ds18x20_copy_scratchpad(gpio_num_t pin, ds18x20_addr_t addr); #endif /* _DS18X20_H */ // === Fim de: components/peripherals/src/ds18x20.h === // === Início de: components/peripherals/src/socket_lock.c === #include #include "freertos/FreeRTOS.h" #include "freertos/task.h" #include "freertos/semphr.h" #include "freertos/timers.h" #include "esp_log.h" #include "driver/gpio.h" #include "nvs.h" #include "socket_lock.h" #include "board_config.h" #define NVS_NAMESPACE "socket_lock" #define NVS_OPERATING_TIME "op_time" #define NVS_BREAK_TIME "break_time" #define NVS_RETRY_COUNT "retry_count" #define NVS_DETECTION_HIGH "detect_hi" #define OPERATING_TIME_MIN 100 #define OPERATING_TIME_MAX 1000 #define LOCK_DELAY 500 #define LOCK_BIT BIT0 #define UNLOCK_BIT BIT1 #define REPEAT_LOCK_BIT BIT2 #define REPEAT_UNLOCK_BIT BIT3 static const char* TAG = "socket_lock"; static nvs_handle_t nvs; static uint16_t operating_time = 300; static uint16_t break_time = 1000; static bool detection_high; static uint8_t retry_count = 5; static socket_lock_status_t status; static TaskHandle_t socket_lock_task; static bool is_locked(void) { gpio_set_level(board_config.socket_lock_a_gpio, 1); gpio_set_level(board_config.socket_lock_b_gpio, 1); vTaskDelay(pdMS_TO_TICKS(board_config.socket_lock_detection_delay)); return gpio_get_level(board_config.socket_lock_detection_gpio) == detection_high; } bool socket_lock_is_locked_state(void) { return is_locked(); } static void socket_lock_task_func(void* param) { uint32_t notification; TickType_t previous_tick = 0; uint8_t attempt = 0; while (true) { if (xTaskNotifyWait(0x00, 0xff, ¬ification, portMAX_DELAY)) { if (notification & (LOCK_BIT | UNLOCK_BIT)) { attempt = retry_count; } if (notification & (UNLOCK_BIT | REPEAT_UNLOCK_BIT)) { gpio_set_level(board_config.socket_lock_a_gpio, 0); gpio_set_level(board_config.socket_lock_b_gpio, 1); vTaskDelay(pdMS_TO_TICKS(operating_time)); if (!is_locked()) { ESP_LOGI(TAG, "Unlock OK"); status = SOCKED_LOCK_STATUS_IDLE; } else { if (attempt > 1) { ESP_LOGW(TAG, "Not unlocked yet, repeating..."); attempt--; xTaskNotify(socket_lock_task, REPEAT_UNLOCK_BIT, eSetBits); } else { ESP_LOGE(TAG, "Not unlocked"); status = SOCKED_LOCK_STATUS_UNLOCKING_FAIL; } } gpio_set_level(board_config.socket_lock_a_gpio, 0); gpio_set_level(board_config.socket_lock_b_gpio, 0); } else if (notification & (LOCK_BIT | REPEAT_LOCK_BIT)) { if (notification & LOCK_BIT) { vTaskDelay(pdMS_TO_TICKS(LOCK_DELAY)); //delay before first lock attempt } gpio_set_level(board_config.socket_lock_a_gpio, 1); gpio_set_level(board_config.socket_lock_b_gpio, 0); vTaskDelay(pdMS_TO_TICKS(operating_time)); if (is_locked()) { ESP_LOGI(TAG, "Lock OK"); status = SOCKED_LOCK_STATUS_IDLE; } else { if (attempt > 1) { ESP_LOGW(TAG, "Not locked yet, repeating..."); attempt--; xTaskNotify(socket_lock_task, REPEAT_LOCK_BIT, eSetBits); } else { ESP_LOGE(TAG, "Not locked"); status = SOCKED_LOCK_STATUS_LOCKING_FAIL; } } gpio_set_level(board_config.socket_lock_a_gpio, 0); gpio_set_level(board_config.socket_lock_b_gpio, 0); } TickType_t delay_tick = xTaskGetTickCount() - previous_tick; if (delay_tick < pdMS_TO_TICKS(break_time)) { vTaskDelay(pdMS_TO_TICKS(break_time) - delay_tick); } previous_tick = xTaskGetTickCount(); } } } void socket_lock_init(void) { if (board_config.socket_lock) { ESP_ERROR_CHECK(nvs_open(NVS_NAMESPACE, NVS_READWRITE, &nvs)); nvs_get_u16(nvs, NVS_OPERATING_TIME, &operating_time); nvs_get_u16(nvs, NVS_BREAK_TIME, &break_time); nvs_get_u8(nvs, NVS_RETRY_COUNT, &retry_count); uint8_t u8; if (nvs_get_u8(nvs, NVS_DETECTION_HIGH, &u8) == ESP_OK) { detection_high = u8; } gpio_config_t io_conf = {}; io_conf.mode = GPIO_MODE_OUTPUT; io_conf.pin_bit_mask = BIT64(board_config.socket_lock_a_gpio) | BIT64(board_config.socket_lock_b_gpio); ESP_ERROR_CHECK(gpio_config(&io_conf)); io_conf.mode = GPIO_MODE_INPUT; io_conf.pin_bit_mask = BIT64(board_config.socket_lock_detection_gpio); ESP_ERROR_CHECK(gpio_config(&io_conf)); xTaskCreate(socket_lock_task_func, "socket_lock_task", 2 * 1024, NULL, 10, &socket_lock_task); } } bool socket_lock_is_detection_high(void) { return detection_high; } void socket_lock_set_detection_high(bool _detection_high) { detection_high = _detection_high; nvs_set_u8(nvs, NVS_DETECTION_HIGH, detection_high); nvs_commit(nvs); } uint16_t socket_lock_get_operating_time(void) { return operating_time; } esp_err_t socket_lock_set_operating_time(uint16_t _operating_time) { if (_operating_time < OPERATING_TIME_MIN || _operating_time > OPERATING_TIME_MAX) { ESP_LOGE(TAG, "Operating time out of range"); return ESP_ERR_INVALID_ARG; } operating_time = _operating_time; nvs_set_u16(nvs, NVS_OPERATING_TIME, operating_time); nvs_commit(nvs); return ESP_OK; } uint8_t socket_lock_get_retry_count(void) { return retry_count; } void socket_lock_set_retry_count(uint8_t _retry_count) { retry_count = _retry_count; nvs_set_u8(nvs, NVS_RETRY_COUNT, retry_count); nvs_commit(nvs); } uint16_t socket_lock_get_break_time(void) { return break_time; } esp_err_t socket_lock_set_break_time(uint16_t _break_time) { if (_break_time < board_config.socket_lock_min_break_time) { ESP_LOGE(TAG, "Operating time out of range"); return ESP_ERR_INVALID_ARG; } break_time = _break_time; nvs_set_u16(nvs, NVS_BREAK_TIME, break_time); nvs_commit(nvs); return ESP_OK; } void socket_lock_set_locked(bool locked) { ESP_LOGI(TAG, "Set locked %d", locked); xTaskNotify(socket_lock_task, locked ? LOCK_BIT : UNLOCK_BIT, eSetBits); status = SOCKED_LOCK_STATUS_OPERATING; } socket_lock_status_t socket_lock_get_status(void) { return status; } // === Fim de: components/peripherals/src/socket_lock.c === // === Início de: components/peripherals/src/temp_sensor.c === #include #include #include "freertos/task.h" #include "esp_log.h" #include "driver/gpio.h" #include "temp_sensor.h" #include "lm75a.h" #define MAX_SENSORS 5 #define MEASURE_PERIOD 10000 // 10s #define MEASURE_ERR_THRESHOLD 3 static const char *TAG = "temp_sensor"; static uint8_t sensor_count = 0; static int16_t low_temp = 0; static int high_temp = 0; static uint8_t measure_err_count = 0; static void temp_sensor_task_func(void *param) { while (true) { high_temp = lm75a_read_temperature(0); vTaskDelay(pdMS_TO_TICKS(MEASURE_PERIOD)); } } void temp_sensor_init(void) { ESP_LOGW(TAG, "temp_sensor_init"); lm75a_init(); xTaskCreate(temp_sensor_task_func, "temp_sensor_task", 5 * 1024, NULL, 5, NULL); } uint8_t temp_sensor_get_count(void) { return sensor_count; } int16_t temp_sensor_get_low(void) { return low_temp; } int temp_sensor_get_high(void) { return high_temp; } bool temp_sensor_is_error(void) { return sensor_count == 0 || measure_err_count > MEASURE_ERR_THRESHOLD; } // === Fim de: components/peripherals/src/temp_sensor.c === // === Início de: components/peripherals/src/aux_io.c === #include #include "freertos/FreeRTOS.h" #include "freertos/semphr.h" #include "freertos/task.h" #include "esp_log.h" #include "driver/gpio.h" #include "nvs.h" #include "aux_io.h" #include "board_config.h" #include "adc.h" #define MAX_AUX_IN 4 #define MAX_AUX_OUT 4 #define MAX_AUX_AIN 4 //static const char* TAG = "aux"; static int aux_in_count = 0; static int aux_out_count = 0; static int aux_ain_count = 0; static struct aux_gpio_s { gpio_num_t gpio; const char* name; } aux_in[MAX_AUX_IN], aux_out[MAX_AUX_OUT]; static struct aux_adc_s { adc_channel_t adc; const char* name; } aux_ain[MAX_AUX_AIN]; void aux_init(void) { // IN gpio_config_t io_conf = { .mode = GPIO_MODE_INPUT, .pull_up_en = GPIO_PULLDOWN_DISABLE, .pull_down_en = GPIO_PULLDOWN_DISABLE, .intr_type = GPIO_INTR_DISABLE, .pin_bit_mask = 0 }; if (board_config.aux_in_1) { aux_in[aux_in_count].gpio = board_config.aux_in_1_gpio; aux_in[aux_in_count].name = board_config.aux_in_1_name; io_conf.pin_bit_mask |= BIT64(board_config.aux_in_1_gpio); aux_in_count++; } if (board_config.aux_in_2) { aux_in[aux_in_count].gpio = board_config.aux_in_2_gpio; aux_in[aux_in_count].name = board_config.aux_in_2_name; io_conf.pin_bit_mask |= BIT64(board_config.aux_in_2_gpio); aux_in_count++; } if (board_config.aux_in_3) { aux_in[aux_in_count].gpio = board_config.aux_in_3_gpio; aux_in[aux_in_count].name = board_config.aux_in_3_name; io_conf.pin_bit_mask |= BIT64(board_config.aux_in_3_gpio); aux_in_count++; } if (board_config.aux_in_4) { aux_in[aux_in_count].gpio = board_config.aux_in_4_gpio; aux_in[aux_in_count].name = board_config.aux_in_4_name; io_conf.pin_bit_mask |= BIT64(board_config.aux_in_4_gpio); aux_in_count++; } if (io_conf.pin_bit_mask > 0) { ESP_ERROR_CHECK(gpio_config(&io_conf)); } // OUT io_conf.mode = GPIO_MODE_OUTPUT; io_conf.pin_bit_mask = 0; if (board_config.aux_out_1) { aux_out[aux_out_count].gpio = board_config.aux_out_1_gpio; aux_out[aux_out_count].name = board_config.aux_out_1_name; io_conf.pin_bit_mask |= BIT64(board_config.aux_out_1_gpio); aux_out_count++; } if (board_config.aux_out_2) { aux_out[aux_out_count].gpio = board_config.aux_out_2_gpio; aux_out[aux_out_count].name = board_config.aux_out_2_name; io_conf.pin_bit_mask |= BIT64(board_config.aux_out_2_gpio); aux_out_count++; } if (board_config.aux_out_3) { aux_out[aux_out_count].gpio = board_config.aux_out_3_gpio; aux_out[aux_out_count].name = board_config.aux_out_3_name; io_conf.pin_bit_mask |= BIT64(board_config.aux_out_3_gpio); aux_out_count++; } if (board_config.aux_out_4) { aux_out[aux_out_count].gpio = board_config.aux_out_4_gpio; aux_out[aux_out_count].name = board_config.aux_out_4_name; io_conf.pin_bit_mask |= BIT64(board_config.aux_out_4_gpio); aux_out_count++; } if (io_conf.pin_bit_mask > 0) { ESP_ERROR_CHECK(gpio_config(&io_conf)); } // AIN adc_oneshot_chan_cfg_t config = { .bitwidth = ADC_BITWIDTH_DEFAULT, .atten = ADC_ATTEN_DB_12 }; if (board_config.aux_ain_1) { aux_ain[aux_ain_count].adc = board_config.aux_ain_1_adc_channel; aux_ain[aux_ain_count].name = board_config.aux_out_1_name; ESP_ERROR_CHECK(adc_oneshot_config_channel(adc_handle, board_config.aux_ain_1_adc_channel, &config)); aux_ain_count++; } if (board_config.aux_ain_2) { aux_ain[aux_ain_count].adc = board_config.aux_ain_2_adc_channel; aux_ain[aux_ain_count].name = board_config.aux_out_2_name; ESP_ERROR_CHECK(adc_oneshot_config_channel(adc_handle, board_config.aux_ain_2_adc_channel, &config)); aux_ain_count++; } } esp_err_t aux_read(const char* name, bool* value) { for (int i = 0; i < aux_in_count; i++) { if (strcmp(aux_in[i].name, name) == 0) { *value = gpio_get_level(aux_in[i].gpio) == 1; return ESP_OK; } } return ESP_ERR_NOT_FOUND; } esp_err_t aux_write(const char* name, bool value) { for (int i = 0; i < aux_out_count; i++) { if (strcmp(aux_out[i].name, name) == 0) { return gpio_set_level(aux_out[i].gpio, value); } } return ESP_ERR_NOT_FOUND; } esp_err_t aux_analog_read(const char* name, int* value) { for (int i = 0; i < aux_ain_count; i++) { if (strcmp(aux_ain[i].name, name) == 0) { int raw = 0; esp_err_t ret = adc_oneshot_read(adc_handle, aux_ain[i].adc, &raw); if (ret == ESP_OK) { return adc_cali_raw_to_voltage(adc_cali_handle, raw, value); } else { return ret; } } } return ESP_ERR_NOT_FOUND; } // === Fim de: components/peripherals/src/aux_io.c === // === Início de: components/peripherals/src/lm75a.c === #include #include #include #include "freertos/FreeRTOS.h" #include "freertos/task.h" #include "freertos/queue.h" #include "driver/gpio.h" #include "driver/i2c_master.h" #define I2C_MASTER_NUM I2C_NUM_1 #define I2C_MASTER_SCL_IO GPIO_NUM_22 // CONFIG_EXAMPLE_I2C_SCL /*!< gpio number for I2C master clock */ #define I2C_MASTER_SDA_IO GPIO_NUM_21 // CONFIG_EXAMPLE_I2C_SDA /*!< gpio number for I2C master data */ #define I2C_MASTER_FREQ_HZ 100000 // CONFIG_I2C_TRANS_SPEED /*!< I2C master clock frequency */ #define I2C_MASTER_TX_BUF_DISABLE 0 /*!< I2C master do not need buffer */ #define I2C_MASTER_RX_BUF_DISABLE 0 /*!< I2C master do not need buffer */ #define LM75A_SLAVE_ADDR 0x48 // CONFIG_LM75A_SLAVE_ADDR /*!< LM75A slave address, you can set any 7bit value */ #define ACK_VAL 0x0 /*!< I2C ack value */ #define NACK_VAL 0x1 /*!< I2C nack value */ #define WRITE_BIT I2C_MASTER_WRITE /*!< I2C master write */ #define READ_BIT I2C_MASTER_READ /*!< I2C master read */ #define ACK_CHECK_EN 0x1 /*!< I2C master will check ack from slave*/ #define ACK_CHECK_DIS 0x0 /*!< I2C master will not check ack from slave */ /* #define GPIO_INPUT_IO_0 CONFIG_LM75A_OS_PIN #define GPIO_OUTPUT_IO_0 CONFIG_LM75A_VCC_PIN #define GPIO_OUTPUT_PIN_SEL (1ULL << GPIO_OUTPUT_IO_0) #define GPIO_INPUT_PIN_SEL (1ULL << GPIO_INPUT_IO_0) #define ESP_INTR_FLAG_DEFAULT 0 */ // static xQueueHandle gpio_evt_queue = NULL; // static int gpio_int_task_enable = 0; // static TaskHandle_t gpio_int_task_handle = NULL; /** * @brief test code to read esp-i2c-slave * We need to fill the buffer of esp slave device, then master can read them out. * * _______________________________________________________________________________________ * | start | slave_addr + rd_bit +ack | read n-1 bytes + ack | read 1 byte + nack | stop | * --------|--------------------------|----------------------|--------------------|------| * */ static esp_err_t i2c_master_read_slave(i2c_port_t i2c_num, uint8_t *data_rd, size_t size) { if (size == 0) { return ESP_OK; } i2c_cmd_handle_t cmd = i2c_cmd_link_create(); i2c_master_start(cmd); i2c_master_write_byte(cmd, (LM75A_SLAVE_ADDR << 1) | READ_BIT, ACK_CHECK_EN); if (size > 1) { i2c_master_read(cmd, data_rd, size - 1, ACK_VAL); } i2c_master_read_byte(cmd, data_rd + size - 1, NACK_VAL); i2c_master_stop(cmd); esp_err_t ret = i2c_master_cmd_begin(i2c_num, cmd, 1000 / portTICK_PERIOD_MS); i2c_cmd_link_delete(cmd); return ret; } /** * @brief Test code to write esp-i2c-slave * Master device write data to slave(both esp32), * the data will be stored in slave buffer. * We can read them out from slave buffer. * * ___________________________________________________________________ * | start | slave_addr + wr_bit + ack | write n bytes + ack | stop | * --------|---------------------------|----------------------|------| * */ static esp_err_t i2c_master_write_slave(i2c_port_t i2c_num, uint8_t *data_wr, size_t size) { i2c_cmd_handle_t cmd = i2c_cmd_link_create(); i2c_master_start(cmd); i2c_master_write_byte(cmd, (LM75A_SLAVE_ADDR << 1) | WRITE_BIT, ACK_CHECK_EN); i2c_master_write(cmd, data_wr, size, ACK_CHECK_EN); i2c_master_stop(cmd); esp_err_t ret = i2c_master_cmd_begin(i2c_num, cmd, 1000 / portTICK_PERIOD_MS); i2c_cmd_link_delete(cmd); return ret; } /** * @brief i2c master initialization */ static void i2c_master_init() { int i2c_master_port = I2C_MASTER_NUM; i2c_config_t conf; conf.mode = I2C_MODE_MASTER; conf.sda_io_num = I2C_MASTER_SDA_IO; conf.sda_pullup_en = GPIO_PULLUP_DISABLE; conf.scl_io_num = I2C_MASTER_SCL_IO; conf.scl_pullup_en = GPIO_PULLUP_DISABLE; conf.master.clk_speed = I2C_MASTER_FREQ_HZ; conf.clk_flags = 0; i2c_param_config(i2c_master_port, &conf); i2c_driver_install(i2c_master_port, conf.mode, I2C_MASTER_RX_BUF_DISABLE, I2C_MASTER_TX_BUF_DISABLE, 0); } int lm75a_read_temperature(int show) { uint8_t buf[2]; float tmp; buf[0] = 0; i2c_master_write_slave(I2C_MASTER_NUM, buf, 1); i2c_master_read_slave(I2C_MASTER_NUM, buf, 2); tmp = buf[0]; if (buf[1] & 128) tmp += 0.5; if (show) printf("lm75a_read_temperature=%.1f\n", tmp); return tmp; } /* static void IRAM_ATTR gpio_isr_handler(void *arg) { uint32_t gpio_num = (uint32_t)arg; xQueueSendFromISR(gpio_evt_queue, &gpio_num, NULL); } static void gpio_int_task(void *arg) { uint32_t io_num; gpio_int_task_enable = 1; while (gpio_int_task_enable) { if (xQueueReceive(gpio_evt_queue, &io_num, portMAX_DELAY)) { // read temperature to clean int; if (io_num == GPIO_INPUT_IO_0) { printf("GPIO[%d] intr, val: %d\n\n", io_num, gpio_get_level(io_num)); lm75a_read_temperature(0); // read to clean interrupt. } } } printf("quit gpio_int_task\n"); if (gpio_evt_queue) { vQueueDelete(gpio_evt_queue); gpio_evt_queue = NULL; } gpio_int_task_handle = NULL; vTaskDelete(NULL); } void init_os_gpio() { printf("init_os_gpio!\n"); if (gpio_evt_queue == NULL) gpio_evt_queue = xQueueCreate(10, sizeof(uint32_t)); if (gpio_int_task_handle == NULL) { xTaskCreate(gpio_int_task, "gpio_int_task", 2048, NULL, 10, &gpio_int_task_handle); // install gpio isr service gpio_install_isr_service(ESP_INTR_FLAG_DEFAULT); // hook isr handler for specific gpio pin again gpio_isr_handler_add(GPIO_INPUT_IO_0, gpio_isr_handler, (void *)GPIO_INPUT_IO_0); } } static void deinit_os_gpio() { printf("deinit_os_gpio!\n"); if (gpio_int_task_handle) { gpio_isr_handler_remove(GPIO_INPUT_IO_0); gpio_uninstall_isr_service(); gpio_int_task_enable = 0; int io = 0; xQueueSend(gpio_evt_queue, &io, 0); // send a fake signal to quit task. } } static void lm75a_vcc_enable() { gpio_config_t io_conf; // enable output for vcc io_conf.intr_type = GPIO_PIN_INTR_DISABLE; io_conf.mode = GPIO_MODE_OUTPUT; io_conf.pin_bit_mask = GPIO_OUTPUT_PIN_SEL; io_conf.pull_down_en = 0; io_conf.pull_up_en = 0; gpio_config(&io_conf); // enable input for interrupt io_conf.intr_type = GPIO_PIN_INTR_NEGEDGE; // GPIO_PIN_INTR_ANYEDGE; io_conf.pin_bit_mask = GPIO_INPUT_PIN_SEL; io_conf.mode = GPIO_MODE_INPUT; io_conf.pull_up_en = 1; gpio_set_pull_mode(GPIO_INPUT_IO_0, GPIO_FLOATING); gpio_config(&io_conf); gpio_set_level(GPIO_OUTPUT_IO_0, 1); } static void lm75a_vcc_disable() { gpio_set_level(GPIO_OUTPUT_IO_0, 0); } */ void lm75a_init() { // lm75a_vcc_enable(); i2c_master_init(); } void lm75a_deinit() { // deinit_os_gpio(); i2c_driver_delete(I2C_MASTER_NUM); // lm75a_vcc_disable(); } void lm75a_set_tos(int tos) { uint8_t buf[4]; printf("lm75a_set_tos: %d\n", tos); // set Tos: buf[0] = 0x3; buf[1] = (tos & 0xff); buf[2] = 0; i2c_master_write_slave(I2C_MASTER_NUM, buf, 3); } void lm75a_set_thys(int thys) { uint8_t buf[4]; printf("lm75a_set_thys: %d\n", thys); // set Thyst: buf[0] = 0x2; buf[1] = (thys & 0xff); buf[2] = 0; i2c_master_write_slave(I2C_MASTER_NUM, buf, 3); } void lm75a_get_tos() { uint8_t buf[4]; float tmp; buf[0] = 0x3; i2c_master_write_slave(I2C_MASTER_NUM, buf, 1); i2c_master_read_slave(I2C_MASTER_NUM, buf, 2); tmp = buf[0]; if (buf[1] & 128) tmp += 0.5; printf("lm75a_get_tos: %.1f\n", tmp); } void lm75a_get_thys() { uint8_t buf[4]; float tmp; buf[0] = 0x2; i2c_master_write_slave(I2C_MASTER_NUM, buf, 1); i2c_master_read_slave(I2C_MASTER_NUM, buf, 2); tmp = buf[0]; if (buf[1] & 128) tmp += 0.5; printf("lm75a_get_thys: %.1f\n", tmp); } void lm75a_set_int(int en) { uint8_t buf[2]; en = !!en; if (en) { printf("lm75a_set_int: %d\n", en); buf[0] = 0x1; buf[1] = (1 << 1); // D1 set to 1; i2c_master_write_slave(I2C_MASTER_NUM, buf, 2); i2c_master_read_slave(I2C_MASTER_NUM, buf, 2); // do one time read to clean interrupt before enter interrupt mode. // gpio_set_intr_type(GPIO_INPUT_IO_0, GPIO_INTR_NEGEDGE); // init_os_gpio(); } else { printf("lm75a_set_int: %d\n", en); // deinit_os_gpio(); buf[0] = 0x1; buf[1] = 0; i2c_master_write_slave(I2C_MASTER_NUM, buf, 2); i2c_master_read_slave(I2C_MASTER_NUM, buf, 2); // do one time read to clean interrupt before enter interrupt mode. } } void lm75a_get_osio() { // printf("os_io: %d\n", gpio_get_level(GPIO_INPUT_IO_0)); } // === Fim de: components/peripherals/src/lm75a.c === // === Início de: components/peripherals/src/onewire.c === /* * The MIT License (MIT) * * Copyright (c) 2014 zeroday nodemcu.com * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * ------------------------------------------------------------------------------- * Portions copyright (C) 2000 Dallas Semiconductor Corporation, under the * following additional terms: * * Except as contained in this notice, the name of Dallas Semiconductor * shall not be used except as stated in the Dallas Semiconductor * Branding Policy. */ #include #include #include #include "rom/ets_sys.h" #include "onewire.h" #define ONEWIRE_SELECT_ROM 0x55 #define ONEWIRE_SKIP_ROM 0xcc #define ONEWIRE_SEARCH 0xf0 #define ONEWIRE_CRC8_TABLE static portMUX_TYPE mux = portMUX_INITIALIZER_UNLOCKED; // Waits up to `max_wait` microseconds for the specified pin to go high. // Returns true if successful, false if the bus never comes high (likely // shorted). static inline bool _onewire_wait_for_bus(gpio_num_t pin, int max_wait) { bool state; for (int i = 0; i < ((max_wait + 4) / 5); i++) { if (gpio_get_level(pin)) break; ets_delay_us(5); } state = gpio_get_level(pin); // Wait an extra 1us to make sure the devices have an adequate recovery // time before we drive things low again. ets_delay_us(1); return state; } static void setup_pin(gpio_num_t pin, bool open_drain) { gpio_set_direction(pin, open_drain ? GPIO_MODE_INPUT_OUTPUT_OD : GPIO_MODE_OUTPUT); // gpio_set_pull_mode(pin, GPIO_PULLUP_ONLY); } // Perform the onewire reset function. We will wait up to 250uS for // the bus to come high, if it doesn't then it is broken or shorted // and we return false; // // Returns true if a device asserted a presence pulse, false otherwise. // bool onewire_reset(gpio_num_t pin) { setup_pin(pin, true); gpio_set_level(pin, 1); // wait until the wire is high... just in case if (!_onewire_wait_for_bus(pin, 250)) return false; gpio_set_level(pin, 0); ets_delay_us(480); portENTER_CRITICAL(&mux); gpio_set_level(pin, 1); // allow it to float ets_delay_us(70); bool r = !gpio_get_level(pin); portEXIT_CRITICAL(&mux); // Wait for all devices to finish pulling the bus low before returning if (!_onewire_wait_for_bus(pin, 410)) return false; return r; } static bool _onewire_write_bit(gpio_num_t pin, bool v) { if (!_onewire_wait_for_bus(pin, 10)) return false; portENTER_CRITICAL(&mux); if (v) { gpio_set_level(pin, 0); // drive output low ets_delay_us(10); gpio_set_level(pin, 1); // allow output high ets_delay_us(55); } else { gpio_set_level(pin, 0); // drive output low ets_delay_us(65); gpio_set_level(pin, 1); // allow output high } ets_delay_us(1); portEXIT_CRITICAL(&mux); return true; } static int _onewire_read_bit(gpio_num_t pin) { if (!_onewire_wait_for_bus(pin, 10)) return -1; portENTER_CRITICAL(&mux); gpio_set_level(pin, 0); ets_delay_us(2); gpio_set_level(pin, 1); // let pin float, pull up will raise ets_delay_us(11); int r = gpio_get_level(pin); // Must sample within 15us of start ets_delay_us(48); portEXIT_CRITICAL(&mux); return r; } // Write a byte. The writing code uses open-drain mode and expects the pullup // resistor to pull the line high when not driven low. If you need strong // power after the write (e.g. DS18B20 in parasite power mode) then call // onewire_power() after this is complete to actively drive the line high. // bool onewire_write(gpio_num_t pin, uint8_t v) { for (uint8_t bitMask = 0x01; bitMask; bitMask <<= 1) if (!_onewire_write_bit(pin, (bitMask & v))) return false; return true; } bool onewire_write_bytes(gpio_num_t pin, const uint8_t* buf, size_t count) { for (size_t i = 0; i < count; i++) if (!onewire_write(pin, buf[i])) return false; return true; } // Read a byte // int onewire_read(gpio_num_t pin) { int r = 0; for (uint8_t bitMask = 0x01; bitMask; bitMask <<= 1) { int bit = _onewire_read_bit(pin); if (bit < 0) return -1; else if (bit) r |= bitMask; } return r; } bool onewire_read_bytes(gpio_num_t pin, uint8_t* buf, size_t count) { size_t i; int b; for (i = 0; i < count; i++) { b = onewire_read(pin); if (b < 0) return false; buf[i] = b; } return true; } bool onewire_select(gpio_num_t pin, onewire_addr_t addr) { uint8_t i; if (!onewire_write(pin, ONEWIRE_SELECT_ROM)) return false; for (i = 0; i < 8; i++) { if (!onewire_write(pin, addr & 0xff)) return false; addr >>= 8; } return true; } bool onewire_skip_rom(gpio_num_t pin) { return onewire_write(pin, ONEWIRE_SKIP_ROM); } bool onewire_power(gpio_num_t pin) { // Make sure the bus is not being held low before driving it high, or we // may end up shorting ourselves out. if (!_onewire_wait_for_bus(pin, 10)) return false; setup_pin(pin, false); gpio_set_level(pin, 1); return true; } void onewire_depower(gpio_num_t pin) { setup_pin(pin, true); } void onewire_search_start(onewire_search_t* search) { // reset the search state memset(search, 0, sizeof(*search)); } void onewire_search_prefix(onewire_search_t* search, uint8_t family_code) { uint8_t i; search->rom_no[0] = family_code; for (i = 1; i < 8; i++) { search->rom_no[i] = 0; } search->last_discrepancy = 64; search->last_device_found = false; } // Perform a search. If the next device has been successfully enumerated, its // ROM address will be returned. If there are no devices, no further // devices, or something horrible happens in the middle of the // enumeration then ONEWIRE_NONE is returned. Use OneWire::reset_search() to // start over. // // --- Replaced by the one from the Dallas Semiconductor web site --- //-------------------------------------------------------------------------- // Perform the 1-Wire Search Algorithm on the 1-Wire bus using the existing // search state. // Return 1 : device found, ROM number in ROM_NO buffer // 0 : device not found, end of search // onewire_addr_t onewire_search_next(onewire_search_t* search, gpio_num_t pin) { //TODO: add more checking for read/write errors uint8_t id_bit_number; uint8_t last_zero, search_result; int rom_byte_number; int8_t id_bit, cmp_id_bit; onewire_addr_t addr; unsigned char rom_byte_mask; bool search_direction; // initialize for search id_bit_number = 1; last_zero = 0; rom_byte_number = 0; rom_byte_mask = 1; search_result = 0; // if the last call was not the last one if (!search->last_device_found) { // 1-Wire reset if (!onewire_reset(pin)) { // reset the search search->last_discrepancy = 0; search->last_device_found = false; return ONEWIRE_NONE; } // issue the search command onewire_write(pin, ONEWIRE_SEARCH); // loop to do the search do { // read a bit and its complement id_bit = _onewire_read_bit(pin); cmp_id_bit = _onewire_read_bit(pin); if ((id_bit == 1) && (cmp_id_bit == 1)) break; else { // all devices coupled have 0 or 1 if (id_bit != cmp_id_bit) search_direction = id_bit; // bit write value for search else { // if this discrepancy if before the Last Discrepancy // on a previous next then pick the same as last time if (id_bit_number < search->last_discrepancy) search_direction = ((search->rom_no[rom_byte_number] & rom_byte_mask) > 0); else // if equal to last pick 1, if not then pick 0 search_direction = (id_bit_number == search->last_discrepancy); // if 0 was picked then record its position in LastZero if (!search_direction) last_zero = id_bit_number; } // set or clear the bit in the ROM byte rom_byte_number // with mask rom_byte_mask if (search_direction) search->rom_no[rom_byte_number] |= rom_byte_mask; else search->rom_no[rom_byte_number] &= ~rom_byte_mask; // serial number search direction write bit _onewire_write_bit(pin, search_direction); // increment the byte counter id_bit_number // and shift the mask rom_byte_mask id_bit_number++; rom_byte_mask <<= 1; // if the mask is 0 then go to new SerialNum byte rom_byte_number and reset mask if (rom_byte_mask == 0) { rom_byte_number++; rom_byte_mask = 1; } } } while (rom_byte_number < 8); // loop until through all ROM bytes 0-7 // if the search was successful then if (!(id_bit_number < 65)) { // search successful so set last_discrepancy,last_device_found,search_result search->last_discrepancy = last_zero; // check for last device if (search->last_discrepancy == 0) search->last_device_found = true; search_result = 1; } } // if no device found then reset counters so next 'search' will be like a first if (!search_result || !search->rom_no[0]) { search->last_discrepancy = 0; search->last_device_found = false; return ONEWIRE_NONE; } else { addr = 0; for (rom_byte_number = 7; rom_byte_number >= 0; rom_byte_number--) { addr = (addr << 8) | search->rom_no[rom_byte_number]; } //printf("Ok I found something at %08x%08x...\n", (uint32_t)(addr >> 32), (uint32_t)addr); } return addr; } // The 1-Wire CRC scheme is described in Maxim Application Note 27: // "Understanding and Using Cyclic Redundancy Checks with Maxim iButton Products" // #ifdef ONEWIRE_CRC8_TABLE // This table comes from Dallas sample code where it is freely reusable, // though Copyright (c) 2000 Dallas Semiconductor Corporation static const uint8_t dscrc_table[] = { 0, 94, 188, 226, 97, 63, 221, 131, 194, 156, 126, 32, 163, 253, 31, 65, 157, 195, 33, 127, 252, 162, 64, 30, 95, 1, 227, 189, 62, 96, 130, 220, 35, 125, 159, 193, 66, 28, 254, 160, 225, 191, 93, 3, 128, 222, 60, 98, 190, 224, 2, 92, 223, 129, 99, 61, 124, 34, 192, 158, 29, 67, 161, 255, 70, 24, 250, 164, 39, 121, 155, 197, 132, 218, 56, 102, 229, 187, 89, 7, 219, 133, 103, 57, 186, 228, 6, 88, 25, 71, 165, 251, 120, 38, 196, 154, 101, 59, 217, 135, 4, 90, 184, 230, 167, 249, 27, 69, 198, 152, 122, 36, 248, 166, 68, 26, 153, 199, 37, 123, 58, 100, 134, 216, 91, 5, 231, 185, 140, 210, 48, 110, 237, 179, 81, 15, 78, 16, 242, 172, 47, 113, 147, 205, 17, 79, 173, 243, 112, 46, 204, 146, 211, 141, 111, 49, 178, 236, 14, 80, 175, 241, 19, 77, 206, 144, 114, 44, 109, 51, 209, 143, 12, 82, 176, 238, 50, 108, 142, 208, 83, 13, 239, 177, 240, 174, 76, 18, 145, 207, 45, 115, 202, 148, 118, 40, 171, 245, 23, 73, 8, 86, 180, 234, 105, 55, 213, 139, 87, 9, 235, 181, 54, 104, 138, 212, 149, 203, 41, 119, 244, 170, 72, 22, 233, 183, 85, 11, 136, 214, 52, 106, 43, 117, 151, 201, 74, 20, 246, 168, 116, 42, 200, 150, 21, 75, 169, 247, 182, 232, 10, 84, 215, 137, 107, 53 }; // // Compute a Dallas Semiconductor 8 bit CRC. These show up in the ROM // and the registers. (note: this might better be done without to // table, it would probably be smaller and certainly fast enough // compared to all those delayMicrosecond() calls. But I got // confused, so I use this table from the examples.) // uint8_t onewire_crc8(const uint8_t* data, uint8_t len) { uint8_t crc = 0; while (len--) crc = dscrc_table[crc ^ *data++]; return crc; } #else // // Compute a Dallas Semiconductor 8 bit CRC directly. // this is much slower, but much smaller, than the lookup table. // uint8_t onewire_crc8(const uint8_t* data, uint8_t len) { uint8_t crc = 0; while (len--) { uint8_t inbyte = *data++; for (int i = 8; i; i--) { uint8_t mix = (crc ^ inbyte) & 0x01; crc >>= 1; if (mix) crc ^= 0x8C; inbyte >>= 1; } } return crc; } #endif /* ONEWIRE_CRC8_TABLE */ // Compute the 1-Wire CRC16 and compare it against the received CRC. // Example usage (reading a DS2408): // // Put everything in a buffer so we can compute the CRC easily. // uint8_t buf[13]; // buf[0] = 0xF0; // Read PIO Registers // buf[1] = 0x88; // LSB address // buf[2] = 0x00; // MSB address // WriteBytes(net, buf, 3); // Write 3 cmd bytes // ReadBytes(net, buf+3, 10); // Read 6 data bytes, 2 0xFF, 2 CRC16 // if (!CheckCRC16(buf, 11, &buf[11])) { // // Handle error. // } // // @param input - Array of bytes to checksum. // @param len - How many bytes to use. // @param inverted_crc - The two CRC16 bytes in the received data. // This should just point into the received data, // *not* at a 16-bit integer. // @param crc - The crc starting value (optional) // @return 1, iff the CRC matches. bool onewire_check_crc16(const uint8_t* input, size_t len, const uint8_t* inverted_crc, uint16_t crc_iv) { uint16_t crc = ~onewire_crc16(input, len, crc_iv); return (crc & 0xFF) == inverted_crc[0] && (crc >> 8) == inverted_crc[1]; } // Compute a Dallas Semiconductor 16 bit CRC. This is required to check // the integrity of data received from many 1-Wire devices. Note that the // CRC computed here is *not* what you'll get from the 1-Wire network, // for two reasons: // 1) The CRC is transmitted bitwise inverted. // 2) Depending on the endian-ness of your processor, the binary // representation of the two-byte return value may have a different // byte order than the two bytes you get from 1-Wire. // @param input - Array of bytes to checksum. // @param len - How many bytes to use. // @param crc - The crc starting value (optional) // @return The CRC16, as defined by Dallas Semiconductor. uint16_t onewire_crc16(const uint8_t* input, size_t len, uint16_t crc_iv) { uint16_t crc = crc_iv; static const uint8_t oddparity[16] = { 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0 }; uint16_t i; for (i = 0; i < len; i++) { // Even though we're just copying a byte from the input, // we'll be doing 16-bit computation with it. uint16_t cdata = input[i]; cdata = (cdata ^ crc) & 0xff; crc >>= 8; if (oddparity[cdata & 0x0F] ^ oddparity[cdata >> 4]) crc ^= 0xC001; cdata <<= 6; crc ^= cdata; cdata <<= 1; crc ^= cdata; } return crc; } // === Fim de: components/peripherals/src/onewire.c === // === Início de: components/peripherals/src/onewire.h === /* * The MIT License (MIT) * * Copyright (c) 2014 zeroday nodemcu.com * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * ------------------------------------------------------------------------------- * Portions copyright (C) 2000 Dallas Semiconductor Corporation, under the * following additional terms: * * Except as contained in this notice, the name of Dallas Semiconductor * shall not be used except as stated in the Dallas Semiconductor * Branding Policy. */ #ifndef ONEWIRE_H_ #define ONEWIRE_H_ #include #include #include "driver/gpio.h" /** * Type used to hold all 1-Wire device ROM addresses (64-bit) */ typedef uint64_t onewire_addr_t; /** * Structure to contain the current state for onewire_search_next(), etc */ typedef struct { uint8_t rom_no[8]; uint8_t last_discrepancy; bool last_device_found; } onewire_search_t; /** * ::ONEWIRE_NONE is an invalid ROM address that will never occur in a device * (CRC mismatch), and so can be useful as an indicator for "no-such-device", * etc. */ #define ONEWIRE_NONE ((onewire_addr_t)(0xffffffffffffffffLL)) /** * @brief Perform a 1-Wire reset cycle. * * @param pin The GPIO pin connected to the 1-Wire bus. * * @return `true` if at least one device responds with a presence pulse, * `false` if no devices were detected (or the bus is shorted, etc) */ bool onewire_reset(gpio_num_t pin); /** * @brief Issue a 1-Wire "ROM select" command to select a particular device. * * It is necessary to call ::onewire_reset() before calling this function. * * @param pin The GPIO pin connected to the 1-Wire bus. * @param addr The ROM address of the device to select * * @return `true` if the "ROM select" command could be successfully issued, * `false` if there was an error. */ bool onewire_select(gpio_num_t pin, const onewire_addr_t addr); /** * @brief Issue a 1-Wire "skip ROM" command to select *all* devices on the bus. * * It is necessary to call ::onewire_reset() before calling this function. * * @param pin The GPIO pin connected to the 1-Wire bus. * * @return `true` if the "skip ROM" command could be successfully issued, * `false` if there was an error. */ bool onewire_skip_rom(gpio_num_t pin); /** * @brief Write a byte on the onewire bus. * * The writing code uses open-drain mode and expects the pullup resistor to * pull the line high when not driven low. If you need strong power after the * write (e.g. DS18B20 in parasite power mode) then call ::onewire_power() * after this is complete to actively drive the line high. * * @param pin The GPIO pin connected to the 1-Wire bus. * @param v The byte value to write * * @return `true` if successful, `false` on error. */ bool onewire_write(gpio_num_t pin, uint8_t v); /** * @brief Write multiple bytes on the 1-Wire bus. * * See ::onewire_write() for more info. * * @param pin The GPIO pin connected to the 1-Wire bus. * @param buf A pointer to the buffer of bytes to be written * @param count Number of bytes to write * * @return `true` if all bytes written successfully, `false` on error. */ bool onewire_write_bytes(gpio_num_t pin, const uint8_t *buf, size_t count); /** * @brief Read a byte from a 1-Wire device. * * @param pin The GPIO pin connected to the 1-Wire bus. * * @return the read byte on success, negative value on error. */ int onewire_read(gpio_num_t pin); /** * @brief Read multiple bytes from a 1-Wire device. * * @param pin The GPIO pin connected to the 1-Wire bus. * @param[out] buf A pointer to the buffer to contain the read bytes * @param count Number of bytes to read * * @return `true` on success, `false` on error. */ bool onewire_read_bytes(gpio_num_t pin, uint8_t *buf, size_t count); /** * @brief Actively drive the bus high to provide extra power for certain * operations of parasitically-powered devices. * * For parasitically-powered devices which need more power than can be * provided via the normal pull-up resistor, it may be necessary for some * operations to drive the bus actively high. This function can be used to * perform that operation. * * The bus can be depowered once it is no longer needed by calling * ::onewire_depower(), or it will be depowered automatically the next time * ::onewire_reset() is called to start another command. * * @note Make sure the device(s) you are powering will not pull more current * than the ESP32/ESP8266 is able to supply via its GPIO pins (this is * especially important when multiple devices are on the same bus and * they are all performing a power-intensive operation at the same time * (i.e. multiple DS18B20 sensors, which have all been given a * "convert T" operation by using ::onewire_skip_rom())). * * @note This routine will check to make sure that the bus is already high * before driving it, to make sure it doesn't attempt to drive it high * while something else is pulling it low (which could cause a reset or * damage the ESP32/ESP8266). * * @param pin The GPIO pin connected to the 1-Wire bus. * * @return `true` on success, `false` on error. */ bool onewire_power(gpio_num_t pin); /** * @brief Stop forcing power onto the bus. * * You only need to do this if you previously called ::onewire_power() to drive * the bus high and now want to allow it to float instead. Note that * onewire_reset() will also automatically depower the bus first, so you do * not need to call this first if you just want to start a new operation. * * @param pin The GPIO pin connected to the 1-Wire bus. */ void onewire_depower(gpio_num_t pin); /** * @brief Clear the search state so that it will start from the beginning on * the next call to ::onewire_search_next(). * * @param[out] search The onewire_search_t structure to reset. */ void onewire_search_start(onewire_search_t *search); /** * @brief Setup the search to search for devices with the specified * "family code". * * @param[out] search The onewire_search_t structure to update. * @param family_code The "family code" to search for. */ void onewire_search_prefix(onewire_search_t *search, uint8_t family_code); /** * @brief Search for the next device on the bus. * * The order of returned device addresses is deterministic. You will always * get the same devices in the same order. * * @note It might be a good idea to check the CRC to make sure you didn't get * garbage. * * @return the address of the next device on the bus, or ::ONEWIRE_NONE if * there is no next address. ::ONEWIRE_NONE might also mean that * the bus is shorted, there are no devices, or you have already * retrieved all of them. */ onewire_addr_t onewire_search_next(onewire_search_t *search, gpio_num_t pin); /** * @brief Compute a Dallas Semiconductor 8 bit CRC. * * These are used in the ROM address and scratchpad registers to verify the * transmitted data is correct. */ uint8_t onewire_crc8(const uint8_t *data, uint8_t len); /** * @brief Compute the 1-Wire CRC16 and compare it against the received CRC. * * Example usage (reading a DS2408): * @code{.c} * // Put everything in a buffer so we can compute the CRC easily. * uint8_t buf[13]; * buf[0] = 0xF0; // Read PIO Registers * buf[1] = 0x88; // LSB address * buf[2] = 0x00; // MSB address * onewire_write_bytes(pin, buf, 3); // Write 3 cmd bytes * onewire_read_bytes(pin, buf+3, 10); // Read 6 data bytes, 2 0xFF, 2 CRC16 * if (!onewire_check_crc16(buf, 11, &buf[11])) { * // TODO: Handle error. * } * @endcode * * @param input Array of bytes to checksum. * @param len Number of bytes in `input` * @param inverted_crc The two CRC16 bytes in the received data. * This should just point into the received data, * *not* at a 16-bit integer. * @param crc_iv The crc starting value (optional) * * @return `true` if the CRC matches, `false` otherwise. */ bool onewire_check_crc16(const uint8_t* input, size_t len, const uint8_t* inverted_crc, uint16_t crc_iv); /** * @brief Compute a Dallas Semiconductor 16 bit CRC. * * This is required to check the integrity of data received from many 1-Wire * devices. Note that the CRC computed here is *not* what you'll get from the * 1-Wire network, for two reasons: * * 1. The CRC is transmitted bitwise inverted. * 2. Depending on the endian-ness of your processor, the binary * representation of the two-byte return value may have a different * byte order than the two bytes you get from 1-Wire. * * @param input Array of bytes to checksum. * @param len How many bytes are in `input`. * @param crc_iv The crc starting value (optional) * * @return the CRC16, as defined by Dallas Semiconductor. */ uint16_t onewire_crc16(const uint8_t* input, size_t len, uint16_t crc_iv); #endif /* ONEWIRE_H_ */ // === Fim de: components/peripherals/src/onewire.h === // === Início de: components/peripherals/src/ds18x20.c === /* * Copyright (c) 2016 Grzegorz Hetman * Copyright (c) 2016 Alex Stewart * Copyright (c) 2018 Ruslan V. Uss * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. Neither the name of the copyright holder nor the names of itscontributors * may be used to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include "ds18x20.h" #define ds18x20_WRITE_SCRATCHPAD 0x4E #define ds18x20_READ_SCRATCHPAD 0xBE #define ds18x20_COPY_SCRATCHPAD 0x48 #define ds18x20_READ_EEPROM 0xB8 #define ds18x20_READ_PWRSUPPLY 0xB4 #define ds18x20_SEARCHROM 0xF0 #define ds18x20_SKIP_ROM 0xCC #define ds18x20_READROM 0x33 #define ds18x20_MATCHROM 0x55 #define ds18x20_ALARMSEARCH 0xEC #define ds18x20_CONVERT_T 0x44 #define CHECK(x) do { esp_err_t __; if ((__ = x) != ESP_OK) return __; } while (0) #define CHECK_ARG(VAL) do { if (!(VAL)) return ESP_ERR_INVALID_ARG; } while (0) static portMUX_TYPE mux = portMUX_INITIALIZER_UNLOCKED; static const char* TAG = "ds18x20"; esp_err_t ds18x20_measure(gpio_num_t pin, ds18x20_addr_t addr, bool wait) { if (!onewire_reset(pin)) return ESP_ERR_INVALID_RESPONSE; if (addr == DS18X20_ANY) onewire_skip_rom(pin); else onewire_select(pin, addr); portENTER_CRITICAL(&mux); onewire_write(pin, ds18x20_CONVERT_T); // For parasitic devices, power must be applied within 10us after issuing // the convert command. onewire_power(pin); portEXIT_CRITICAL(&mux); if (wait){ vTaskDelay(pdMS_TO_TICKS(750)); onewire_depower(pin); } return ESP_OK; } esp_err_t ds18x20_read_scratchpad(gpio_num_t pin, ds18x20_addr_t addr, uint8_t* buffer) { CHECK_ARG(buffer); uint8_t crc; uint8_t expected_crc; if (!onewire_reset(pin)) return ESP_ERR_INVALID_RESPONSE; if (addr == DS18X20_ANY) onewire_skip_rom(pin); else onewire_select(pin, addr); onewire_write(pin, ds18x20_READ_SCRATCHPAD); for (int i = 0; i < 8; i++) buffer[i] = onewire_read(pin); crc = onewire_read(pin); expected_crc = onewire_crc8(buffer, 8); if (crc != expected_crc) { ESP_LOGE(TAG, "CRC check failed reading scratchpad: %02x %02x %02x %02x %02x %02x %02x %02x : %02x (expected %02x)", buffer[0], buffer[1], buffer[2], buffer[3], buffer[4], buffer[5], buffer[6], buffer[7], crc, expected_crc); return ESP_ERR_INVALID_CRC; } return ESP_OK; } esp_err_t ds18x20_write_scratchpad(gpio_num_t pin, ds18x20_addr_t addr, uint8_t* buffer) { CHECK_ARG(buffer); if (!onewire_reset(pin)) return ESP_ERR_INVALID_RESPONSE; if (addr == DS18X20_ANY) onewire_skip_rom(pin); else onewire_select(pin, addr); onewire_write(pin, ds18x20_WRITE_SCRATCHPAD); for (int i = 0; i < 3; i++) onewire_write(pin, buffer[i]); return ESP_OK; } esp_err_t ds18x20_copy_scratchpad(gpio_num_t pin, ds18x20_addr_t addr) { if (!onewire_reset(pin)) return ESP_ERR_INVALID_RESPONSE; if (addr == DS18X20_ANY) onewire_skip_rom(pin); else onewire_select(pin, addr); portENTER_CRITICAL(&mux); onewire_write(pin, ds18x20_COPY_SCRATCHPAD); // For parasitic devices, power must be applied within 10us after issuing // the convert command. onewire_power(pin); portEXIT_CRITICAL(&mux); // And then it needs to keep that power up for 10ms. vTaskDelay(pdMS_TO_TICKS(10)); onewire_depower(pin); return ESP_OK; } esp_err_t ds18b20_read_temperature(gpio_num_t pin, ds18x20_addr_t addr, int16_t* temperature) { CHECK_ARG(temperature); uint8_t scratchpad[8]; int16_t temp; CHECK(ds18x20_read_scratchpad(pin, addr, scratchpad)); temp = scratchpad[1] << 8 | scratchpad[0]; *temperature = ((int16_t)temp * 625.0) / 100; return ESP_OK; } esp_err_t ds18s20_read_temperature(gpio_num_t pin, ds18x20_addr_t addr, int16_t* temperature) { CHECK_ARG(temperature); uint8_t scratchpad[8]; int16_t temp; CHECK(ds18x20_read_scratchpad(pin, addr, scratchpad)); temp = scratchpad[1] << 8 | scratchpad[0]; temp = ((temp & 0xfffe) << 3) + (16 - scratchpad[6]) - 4; *temperature = (temp * 625) / 100 - 25; return ESP_OK; } esp_err_t ds18x20_read_temperature(gpio_num_t pin, ds18x20_addr_t addr, int16_t* temperature) { if ((uint8_t)addr == DS18B20_FAMILY_ID) { return ds18b20_read_temperature(pin, addr, temperature); } else { return ds18s20_read_temperature(pin, addr, temperature); } } esp_err_t ds18b20_measure_and_read(gpio_num_t pin, ds18x20_addr_t addr, int16_t* temperature) { CHECK_ARG(temperature); CHECK(ds18x20_measure(pin, addr, true)); return ds18b20_read_temperature(pin, addr, temperature); } esp_err_t ds18s20_measure_and_read(gpio_num_t pin, ds18x20_addr_t addr, int16_t* temperature) { CHECK_ARG(temperature); CHECK(ds18x20_measure(pin, addr, true)); return ds18s20_read_temperature(pin, addr, temperature); } esp_err_t ds18x20_measure_and_read(gpio_num_t pin, ds18x20_addr_t addr, int16_t* temperature) { CHECK_ARG(temperature); CHECK(ds18x20_measure(pin, addr, true)); return ds18x20_read_temperature(pin, addr, temperature); } esp_err_t ds18x20_measure_and_read_multi(gpio_num_t pin, ds18x20_addr_t* addr_list, size_t addr_count, int16_t* result_list) { CHECK_ARG(result_list && addr_count); CHECK(ds18x20_measure(pin, DS18X20_ANY, true)); return ds18x20_read_temp_multi(pin, addr_list, addr_count, result_list); } esp_err_t ds18x20_scan_devices(gpio_num_t pin, ds18x20_addr_t* addr_list, size_t addr_count, size_t* found) { CHECK_ARG(addr_list && addr_count); onewire_search_t search; onewire_addr_t addr; *found = 0; onewire_search_start(&search); while ((addr = onewire_search_next(&search, pin)) != ONEWIRE_NONE) { uint8_t family_id = (uint8_t)addr; if (family_id == DS18B20_FAMILY_ID || family_id == DS18S20_FAMILY_ID) { if (*found < addr_count) addr_list[*found] = addr; *found += 1; } } return ESP_OK; } esp_err_t ds18x20_read_temp_multi(gpio_num_t pin, ds18x20_addr_t* addr_list, size_t addr_count, int16_t* result_list) { CHECK_ARG(result_list); esp_err_t res = ESP_OK; for (size_t i = 0; i < addr_count; i++) { esp_err_t tmp = ds18x20_read_temperature(pin, addr_list[i], &result_list[i]); if (tmp != ESP_OK) res = tmp; } return res; } // === Fim de: components/peripherals/src/ds18x20.c === // === Início de: components/peripherals/src/led.c === #include "freertos/FreeRTOS.h" #include "freertos/task.h" #include "freertos/timers.h" #include "esp_log.h" #include "driver/gpio.h" #include "led.h" #include "board_config.h" #include "evse_error.h" #include "evse_api.h" #define LED_UPDATE_INTERVAL_MS 100 #define BLOCK_TIME pdMS_TO_TICKS(10) static const char *TAG = "led"; typedef struct { gpio_num_t gpio; bool on : 1; uint16_t ontime; uint16_t offtime; TimerHandle_t timer; led_pattern_t pattern; uint8_t blink_count; } led_t; static led_t leds[LED_ID_MAX] = {0}; static TimerHandle_t led_update_timer = NULL; static evse_state_t led_state = -1; // ---------------------------- // Funções Internas // ---------------------------- static void led_update_timer_callback(TimerHandle_t xTimer); static void led_update(void); static void led_apply_by_state(evse_state_t state); static inline void led_gpio_write(gpio_num_t gpio, bool level) { if (gpio != GPIO_NUM_NC) gpio_set_level(gpio, level); } static void led_timer_callback(TimerHandle_t xTimer) { led_t *led = (led_t *)pvTimerGetTimerID(xTimer); led->on = !led->on; led_gpio_write(led->gpio, led->on); uint32_t next_time = led->on ? led->ontime : led->offtime; xTimerChangePeriod(led->timer, pdMS_TO_TICKS(next_time), BLOCK_TIME); } // ---------------------------- // Inicialização // ---------------------------- void led_init(void) { gpio_config_t io_conf = { .mode = GPIO_MODE_OUTPUT, .intr_type = GPIO_INTR_DISABLE, .pull_up_en = GPIO_PULLUP_DISABLE, .pull_down_en = GPIO_PULLDOWN_ENABLE, .pin_bit_mask = 0 }; for (int i = 0; i < LED_ID_MAX; i++) { leds[i].gpio = GPIO_NUM_NC; } if (board_config.led_stop) { leds[LED_ID_STOP].gpio = board_config.led_stop_gpio; io_conf.pin_bit_mask |= BIT64(board_config.led_stop_gpio); } if (board_config.led_charging) { leds[LED_ID_CHARGING].gpio = board_config.led_charging_gpio; io_conf.pin_bit_mask |= BIT64(board_config.led_charging_gpio); } if (board_config.led_error) { leds[LED_ID_ERROR].gpio = board_config.led_error_gpio; io_conf.pin_bit_mask |= BIT64(board_config.led_error_gpio); } if (io_conf.pin_bit_mask != 0) { ESP_ERROR_CHECK(gpio_config(&io_conf)); } if (!led_update_timer) { led_update_timer = xTimerCreate("led_update_timer", pdMS_TO_TICKS(LED_UPDATE_INTERVAL_MS), pdTRUE, NULL, led_update_timer_callback); if (led_update_timer) { xTimerStart(led_update_timer, BLOCK_TIME); } else { ESP_LOGE(TAG, "Failed to create LED update timer"); } } } // ---------------------------- // API Pública // ---------------------------- void led_set_state(led_id_t led_id, uint16_t ontime, uint16_t offtime) { if (led_id >= LED_ID_MAX) return; led_t *led = &leds[led_id]; if (led->gpio == GPIO_NUM_NC) return; // Evita reconfiguração idêntica if (led->ontime == ontime && led->offtime == offtime) return; if (led->timer) { xTimerStop(led->timer, BLOCK_TIME); } led->ontime = ontime; led->offtime = offtime; if (ontime == 0) { led->on = false; led_gpio_write(led->gpio, 0); } else if (offtime == 0) { led->on = true; led_gpio_write(led->gpio, 1); } else { led->on = true; led_gpio_write(led->gpio, 1); if (!led->timer) { led->timer = xTimerCreate("led_timer", pdMS_TO_TICKS(ontime), pdFALSE, (void *)led, led_timer_callback); } if (led->timer) { xTimerStart(led->timer, BLOCK_TIME); } } } void led_apply_pattern(led_id_t id, led_pattern_t pattern) { if (id >= LED_ID_MAX) return; led_t *led = &leds[id]; if (led->gpio == GPIO_NUM_NC) return; if (led->pattern == pattern) return; if (led->timer) { xTimerStop(led->timer, BLOCK_TIME); } led->pattern = pattern; led->blink_count = 0; switch (pattern) { case LED_PATTERN_OFF: led_set_state(id, 0, 0); break; case LED_PATTERN_ON: led_set_state(id, 1, 0); break; case LED_PATTERN_BLINK: led_set_state(id, 500, 500); break; case LED_PATTERN_BLINK_FAST: led_set_state(id, 200, 200); break; case LED_PATTERN_BLINK_SLOW: led_set_state(id, 300, 1700); break; case LED_PATTERN_CHARGING_EFFECT: led_set_state(id, 2000, 1000); break; } } // ---------------------------- // Controle por Estado // ---------------------------- static void led_apply_by_state(evse_state_t state) { // Reset todos led_apply_pattern(LED_ID_STOP, LED_PATTERN_OFF); led_apply_pattern(LED_ID_CHARGING, LED_PATTERN_OFF); led_apply_pattern(LED_ID_ERROR, LED_PATTERN_OFF); switch (state) { case EVSE_STATE_A: led_apply_pattern(LED_ID_STOP, LED_PATTERN_ON); break; case EVSE_STATE_B1: case EVSE_STATE_B2: case EVSE_STATE_C1: led_apply_pattern(LED_ID_CHARGING, LED_PATTERN_ON); break; case EVSE_STATE_C2: led_apply_pattern(LED_ID_CHARGING, LED_PATTERN_CHARGING_EFFECT); break; case EVSE_STATE_D1: case EVSE_STATE_D2: led_apply_pattern(LED_ID_CHARGING, LED_PATTERN_BLINK_FAST); break; case EVSE_STATE_E: case EVSE_STATE_F: led_apply_pattern(LED_ID_ERROR, LED_PATTERN_BLINK_FAST); break; default: break; } } // ---------------------------- // Timer Update // ---------------------------- static void led_update(void) { if (evse_error_is_active()) { led_apply_pattern(LED_ID_ERROR, LED_PATTERN_BLINK_FAST); led_apply_pattern(LED_ID_STOP, LED_PATTERN_OFF); led_apply_pattern(LED_ID_CHARGING, LED_PATTERN_OFF); return; } evse_state_t current = evse_get_state(); if (current != led_state) { led_state = current; led_apply_by_state(current); } } static void led_update_timer_callback(TimerHandle_t xTimer) { (void)xTimer; led_update(); } // === Fim de: components/peripherals/src/led.c === // === Início de: components/peripherals/src/rcm.c === #include "freertos/FreeRTOS.h" #include "freertos/task.h" #include "driver/gpio.h" #include "esp_log.h" #include "rcm.h" #include "board_config.h" #include "evse_api.h" // static bool do_test = false; // static bool triggered = false; // static bool test_triggered = false; // static void IRAM_ATTR rcm_isr_handler(void* arg) // { // if (!do_test) { // triggered = true; // } else { // test_triggered = true; // } // } void rcm_init(void) { if (board_config.rcm) { gpio_config_t io_conf = {}; io_conf.mode = GPIO_MODE_OUTPUT; io_conf.pin_bit_mask = BIT64(board_config.rcm_test_gpio); ESP_ERROR_CHECK(gpio_config(&io_conf)); io_conf.mode = GPIO_MODE_INPUT; // io_conf.intr_type = GPIO_INTR_POSEDGE; io_conf.pin_bit_mask = BIT64(board_config.rcm_gpio); ESP_ERROR_CHECK(gpio_config(&io_conf)); //ESP_ERROR_CHECK(gpio_isr_handler_add(board_config.rcm_gpio, rcm_isr_handler, NULL)); } } bool rcm_test(void) { // do_test = true; // test_triggered = false; // gpio_set_level(board_config.rcm_test_gpio, 1); // vTaskDelay(pdMS_TO_TICKS(100)); // gpio_set_level(board_config.rcm_test_gpio, 0); // do_test = false; // return test_triggered; gpio_set_level(board_config.rcm_test_gpio, 1); vTaskDelay(pdMS_TO_TICKS(100)); bool success = gpio_get_level(board_config.rcm_gpio) == 1; gpio_set_level(board_config.rcm_test_gpio, 0); return success; } bool rcm_is_triggered(void) { // bool _triggered = triggered; // if (gpio_get_level(board_config.rcm_gpio) == 0) { // triggered = false; // } // return _triggered; if (gpio_get_level(board_config.rcm_gpio) == 1) { vTaskDelay(pdMS_TO_TICKS(1)); return gpio_get_level(board_config.rcm_gpio) == 1; } return false; } // === Fim de: components/peripherals/src/rcm.c === // === Início de: components/peripherals/src/adc.c === #include "adc.h" #include "esp_log.h" const static char* TAG = "adc"; adc_oneshot_unit_handle_t adc_handle; adc_cali_handle_t adc_cali_handle; void adc_init(void) { adc_oneshot_unit_init_cfg_t conf = { .unit_id = ADC_UNIT_1 }; ESP_ERROR_CHECK(adc_oneshot_new_unit(&conf, &adc_handle)); bool calibrated = false; #if ADC_CALI_SCHEME_CURVE_FITTING_SUPPORTED if (!calibrated) { ESP_LOGI(TAG, "Calibration scheme version is %s", "Curve Fitting"); adc_cali_curve_fitting_config_t cali_config = { .unit_id = ADC_UNIT_1, .atten = ADC_ATTEN_DB_12, .bitwidth = ADC_BITWIDTH_DEFAULT, }; if (adc_cali_create_scheme_curve_fitting(&cali_config, &adc_cali_handle) == ESP_OK) { calibrated = true; } } #endif #if ADC_CALI_SCHEME_LINE_FITTING_SUPPORTED if (!calibrated) { ESP_LOGI(TAG, "Calibration scheme version is %s", "Line Fitting"); adc_cali_line_fitting_config_t cali_config = { .unit_id = ADC_UNIT_1, .atten = ADC_ATTEN_DB_12, .bitwidth = ADC_BITWIDTH_DEFAULT, #if CONFIG_IDF_TARGET_ESP32 .default_vref = 1100 #endif }; if (adc_cali_create_scheme_line_fitting(&cali_config, &adc_cali_handle) == ESP_OK) { calibrated = true; } } #endif if (!calibrated) { ESP_LOGE(TAG, "No calibration scheme"); ESP_ERROR_CHECK(ESP_FAIL); } } // === Fim de: components/peripherals/src/adc.c === // === Início de: components/peripherals/src/adc121s021_dma.c === #include "driver/spi_master.h" #include "driver/gpio.h" #include "esp_log.h" #include "freertos/FreeRTOS.h" #include "freertos/task.h" #include "adc121s021_dma.h" #define TAG "adc_dma" #define PIN_NUM_MOSI 23 #define PIN_NUM_MISO 19 #define PIN_NUM_CLK 18 #define PIN_NUM_CS 5 #define SPI_HOST_USED SPI2_HOST #define SAMPLE_SIZE_BYTES 2 #define ADC_BITS 12 static spi_device_handle_t adc_spi; void adc121s021_dma_init(void) { spi_bus_config_t buscfg = { .mosi_io_num = PIN_NUM_MOSI, .miso_io_num = PIN_NUM_MISO, .sclk_io_num = PIN_NUM_CLK, .quadwp_io_num = -1, .quadhd_io_num = -1, .max_transfer_sz = SAMPLE_SIZE_BYTES, }; spi_device_interface_config_t devcfg = { .clock_speed_hz = 6000000, // 6 MHz .mode = 0, .spics_io_num = PIN_NUM_CS, .queue_size = 2, .flags = SPI_DEVICE_NO_DUMMY, }; ESP_ERROR_CHECK(spi_bus_initialize(SPI_HOST_USED, &buscfg, SPI_DMA_CH_AUTO)); ESP_ERROR_CHECK(spi_bus_add_device(SPI_HOST_USED, &devcfg, &adc_spi)); } bool adc121s021_dma_get_sample(uint16_t *sample) { uint8_t tx_buffer[2] = {0x00, 0x00}; // Dummy TX uint8_t rx_buffer[2] = {0}; spi_transaction_t t = { .length = 16, // 16 bits .tx_buffer = tx_buffer, .rx_buffer = rx_buffer, .flags = 0 }; esp_err_t err = spi_device_transmit(adc_spi, &t); if (err != ESP_OK) { ESP_LOGE(TAG, "SPI transmit error: %s", esp_err_to_name(err)); return false; } // Extrai os 12 bits significativos da resposta do ADC121S021 *sample = ((rx_buffer[0] << 8) | rx_buffer[1]) & 0x0FFF; return true; } // === Fim de: components/peripherals/src/adc121s021_dma.c === // === Início de: components/peripherals/src/peripherals.c === #include "peripherals.h" #include "adc.h" #include "led.h" #include "buzzer.h" #include "proximity.h" #include "ac_relay.h" #include "socket_lock.h" #include "rcm.h" #include "aux_io.h" #include "ntc_sensor.h" void peripherals_init(void) { ac_relay_init(); led_init(); buzzer_init(); adc_init(); proximity_init(); // socket_lock_init(); // rcm_init(); //energy_meter_init(); // aux_init(); ntc_sensor_init(); } // === Fim de: components/peripherals/src/peripherals.c === // === Início de: components/peripherals/include/adc121s021_dma.h === #ifndef ADC_DMA_H_ #define ADC_DMA_H_ #include #include void adc121s021_dma_init(void); bool adc121s021_dma_get_sample(uint16_t *sample); #endif /* ADC_DMA_h_ */ // === Fim de: components/peripherals/include/adc121s021_dma.h === // === Início de: components/peripherals/include/peripherals.h === #ifndef PERIPHERALS_H #define PERIPHERALS_H void peripherals_init(void); #endif /* PERIPHERALS_H */ // === Fim de: components/peripherals/include/peripherals.h === // === Início de: components/peripherals/include/rcm.h === #ifndef RCM_H_ #define RCM_H_ #include /** * @brief Initialize residual current monitor * */ void rcm_init(void); /** * @brief Test residual current monitor * * @return true * @return false */ bool rcm_test(void); /** * @brief Residual current monitor was detected leakage * * @return true * @return false */ bool rcm_is_triggered(void); #endif /* RCM_H_ */ // === Fim de: components/peripherals/include/rcm.h === // === Início de: components/peripherals/include/aux_io.h === #ifndef AUX_IO_H_ #define AUX_IO_H_ #include "esp_err.h" /** * @brief Initialize aux * */ void aux_init(void); /** * @brief Read digital input * * @param name * @param value * @return esp_err_t */ esp_err_t aux_read(const char *name, bool *value); /** * @brief Write digial output * * @param name * @param value * @return esp_err_t */ esp_err_t aux_write(const char *name, bool value); /** * @brief Read analog input * * @param name * @param value * @return esp_err_t */ esp_err_t aux_analog_read(const char *name, int *value); #endif /* AUX_IO_H_ */ // === Fim de: components/peripherals/include/aux_io.h === // === Início de: components/peripherals/include/led.h === #ifndef LED_H_ #define LED_H_ #include #include /** * @brief Identificadores dos LEDs disponíveis no hardware */ typedef enum { LED_ID_STOP, LED_ID_CHARGING, LED_ID_ERROR, LED_ID_MAX } led_id_t; /** * @brief Padrões de comportamento possíveis para os LEDs */ typedef enum { LED_PATTERN_OFF, ///< LED sempre desligado LED_PATTERN_ON, ///< LED sempre ligado LED_PATTERN_BLINK, ///< Pisca com ciclo padrão (500ms on / 500ms off) LED_PATTERN_BLINK_FAST, ///< Pisca rápido (200ms / 200ms) LED_PATTERN_BLINK_SLOW, ///< Pisca lento (300ms / 1700ms) LED_PATTERN_CHARGING_EFFECT ///< Efeito visual para carregamento (2s on / 1s off) } led_pattern_t; /** * @brief Inicializa os LEDs com base na configuração da placa * Deve ser chamada uma única vez na inicialização do sistema. */ void led_init(void); /** * @brief Define diretamente o tempo ligado/desligado de um LED. * Pode ser usado para padrões personalizados. * * @param led_id Identificador do LED (ver enum led_id_t) * @param ontime Tempo ligado em milissegundos * @param offtime Tempo desligado em milissegundos */ void led_set_state(led_id_t led_id, uint16_t ontime, uint16_t offtime); /** * @brief Aplica um dos padrões de piscar definidos ao LED * * @param led_id Identificador do LED (ver enum led_id_t) * @param pattern Padrão desejado (ver enum led_pattern_t) */ void led_apply_pattern(led_id_t led_id, led_pattern_t pattern); #endif /* LED_H_ */ // === Fim de: components/peripherals/include/led.h === // === Início de: components/peripherals/include/buzzer.h === #ifndef BUZZER_H_ #define BUZZER_H_ #include /** * @brief Inicializa o buzzer e inicia monitoramento automático do estado EVSE. */ void buzzer_init(void); /** * @brief Liga e desliga o buzzer manualmente (uso interno ou testes). */ void buzzer_on(void); void buzzer_off(void); /** * @brief Ativa o buzzer por um período fixo (em milissegundos). */ void buzzer_beep_ms(uint16_t ms); #endif /* BUZZER_H_ */ // === Fim de: components/peripherals/include/buzzer.h === // === Início de: components/peripherals/include/ac_relay.h === #ifndef AC_RELAY_H_ #define AC_RELAY_H_ #include /** * @brief Inicializa o relé de corrente alternada. */ void ac_relay_init(void); /** * @brief Define o estado do relé de corrente alternada. * * @param state true para ligar, false para desligar. */ void ac_relay_set_state(bool state); /** * @brief Retorna o estado atual do relé de corrente alternada. * * @return true se estiver ligado, false se desligado. */ bool ac_relay_get_state(void); #endif /* AC_RELAY_H_ */ // === Fim de: components/peripherals/include/ac_relay.h === // === Início de: components/peripherals/include/lm75a.h === #ifndef LM75A_H #define LM75A_H #include "esp_err.h" // Para o uso de tipos de erro do ESP-IDF, caso esteja utilizando. #ifdef __cplusplus extern "C" { #endif /** * @brief Inicializa o sensor LM75A. * * Configura o sensor para leitura e define os pinos de comunicação. */ esp_err_t lm75a_init(void); /** * @brief Desinicializa o sensor LM75A. * * Libera os recursos usados pelo sensor. */ esp_err_t lm75a_deinit(void); /** * @brief Lê a temperatura do LM75A. * * @param show Se for 1, a temperatura será exibida em algum tipo de log ou interface. * Se for 0, o valor é apenas retornado sem exibição. * @return A temperatura lida em graus Celsius. */ float lm75a_read_temperature(int show); /** * @brief Define o valor do limite de temperatura (T_OS) para o sensor LM75A. * * @param tos O limite de temperatura de sobrecarga (T_OS) em graus Celsius. * @return ESP_OK em caso de sucesso ou código de erro se falhar. */ esp_err_t lm75a_set_tos(int tos); /** * @brief Define o valor do limite de temperatura de histerese (T_HYS) para o sensor LM75A. * * @param thys O limite de histerese de temperatura (T_HYS) em graus Celsius. * @return ESP_OK em caso de sucesso ou código de erro se falhar. */ esp_err_t lm75a_set_thys(int thys); /** * @brief Obtém o limite de temperatura de sobrecarga (T_OS) do sensor LM75A. * * @return O valor atual de T_OS em graus Celsius. */ int lm75a_get_tos(void); /** * @brief Obtém o limite de temperatura de histerese (T_HYS) do sensor LM75A. * * @return O valor atual de T_HYS em graus Celsius. */ int lm75a_get_thys(void); /** * @brief Habilita ou desabilita a interrupção do LM75A. * * @param en 1 para habilitar a interrupção, 0 para desabilitar. * @return ESP_OK em caso de sucesso ou código de erro se falhar. */ esp_err_t lm75a_set_int(int en); /** * @brief Obtém o estado do pino OS (Overtemperature Shutdown) do LM75A. * * @return 1 se o pino OS estiver ativo (indica que a temperatura de sobrecarga foi atingida), * 0 caso contrário. */ int lm75a_get_osio(void); #ifdef __cplusplus } #endif #endif /* LM75A_H */ // === Fim de: components/peripherals/include/lm75a.h === // === Início de: components/peripherals/include/ntc_sensor.h === #ifndef NTC_SENSOR_H_ #define NTC_SENSOR_H_ /** * @brief Initialize ntc senso * */ void ntc_sensor_init(void); /** * @brief Return temperature after temp_sensor_measure * * @return float */ float ntc_temp_sensor(void); #endif /* NTC_SENSOR_H_ */ // === Fim de: components/peripherals/include/ntc_sensor.h === // === Início de: components/peripherals/include/proximity.h === #ifndef PROXIMITY_H_ #define PROXIMITY_H_ #include /** * @brief Initialize proximity check * */ void proximity_init(void); /** * @brief Return measured value of max current on PP * * @return current in A */ uint8_t proximity_get_max_current(void); #endif /* PROXIMITY_H_ */ // === Fim de: components/peripherals/include/proximity.h === // === Início de: components/peripherals/include/socket_lock.h === #ifndef SOCKED_LOCK_H_ #define SOCKED_LOCK_H_ #include "esp_err.h" typedef enum { SOCKED_LOCK_STATUS_IDLE, SOCKED_LOCK_STATUS_OPERATING, SOCKED_LOCK_STATUS_LOCKING_FAIL, SOCKED_LOCK_STATUS_UNLOCKING_FAIL } socket_lock_status_t; /** * @brief Initialize socket lock * */ void socket_lock_init(void); /** * @brief Get socket lock detection on high, stored in NVS * * @return true when locked has zero resistance * @return false when unlocked has zero resistance */ bool socket_lock_is_detection_high(void); /** * @brief Set socket lock detection on high, stored in NVS * * @param detection_high */ void socket_lock_set_detection_high(bool detection_high); /** * @brief Get socket lock operating time * * @return time in ms */ uint16_t socket_lock_get_operating_time(void); /** * @brief Set socket lock operating time * * @param operating_time - time in ms * @return esp_err_t */ esp_err_t socket_lock_set_operating_time(uint16_t operating_time); /** * @brief Get socket lock retry count * * @return retry count */ uint8_t socket_lock_get_retry_count(void); /** * @brief Set socket lock retry count * * @param retry_count */ void socket_lock_set_retry_count(uint8_t retry_count); /** * @brief Get socket lock break time * * @return time in ms */ uint16_t socket_lock_get_break_time(void); /** * @brief Set socket lock break time * * @param break_time * @return esp_err_t */ esp_err_t socket_lock_set_break_time(uint16_t break_time); /** * @brief Set socke lock to locked / unlocked state * * @param locked */ void socket_lock_set_locked(bool locked); /** * @brief Get socket lock status * * @return socket_lock_status_t */ socket_lock_status_t socket_lock_get_status(void); /** * @brief Read the current physical lock state using the detection pin. */ bool socket_lock_is_locked_state(void); #endif /* SOCKED_LOCK_H_ */ // === Fim de: components/peripherals/include/socket_lock.h === // === Início de: components/peripherals/include/adc.h === #ifndef ADC_H_ #define ADC_H_ #include "esp_adc/adc_oneshot.h" #include "esp_adc/adc_cali.h" #include "esp_adc/adc_cali_scheme.h" extern adc_oneshot_unit_handle_t adc_handle; extern adc_cali_handle_t adc_cali_handle; void adc_init(void); #endif /* ADC_H_ */ // === Fim de: components/peripherals/include/adc.h === // === Início de: components/peripherals/include/temp_sensor.h === #ifndef TEMP_SENSOR_H_ #define TEMP_SENSOR_H_ #include #include "esp_err.h" /** * @brief Initialize DS18S20 temperature sensor bus * */ void temp_sensor_init(void); /** * @brief Get found sensor count * * @return uint8_t */ uint8_t temp_sensor_get_count(void); /** * @brief Return lowest temperature after temp_sensor_measure * * @return int16_t */ int16_t temp_sensor_get_low(void); /** * @brief Return highest temperature after temp_sensor_measure * * @return int */ int temp_sensor_get_high(void); /** * @brief Return temperature sensor error * * @return bool */ bool temp_sensor_is_error(void); #endif /* TEMP_SENSOR_H_ */ // === Fim de: components/peripherals/include/temp_sensor.h ===