// meter_dts6619.c — Driver Modbus RTU para SINOTIMER DTS6619 (ESP-IDF) #include "meter_events.h" #include "modbus_params.h" #include "mbcontroller.h" #include "esp_log.h" #include "driver/uart.h" #include #include #define TAG "serial_mdb_dts6619" // ===== UART / RS-485 ===== #define MB_PORT_NUM 2 #define MB_DEV_SPEED 9600 // Ajuste os pinos conforme seu hardware (evite GPIO2 para RTS/DE/RE se possível) #define MB_UART_TXD 17 #define MB_UART_RXD 16 #define MB_UART_RTS 2 // pino DE/RE do transceiver RS-485 // ===== Timings ===== #define UPDATE_INTERVAL (5000 / portTICK_PERIOD_MS) #define POLL_INTERVAL (200 / portTICK_PERIOD_MS) // DTS6619 prefere >100 ms // ===== Helpers ===== #define HOLD_OFFSET(field) ((uint16_t)(offsetof(holding_reg_params_t, field) + 1)) #define STR(fieldname) ((const char *)(fieldname)) #define OPTS(min_val, max_val, step_val) {.opt1 = min_val, .opt2 = max_val, .opt3 = step_val} // ===== Estado ===== static bool is_initialized = false; static TaskHandle_t meter_task = NULL; // ====== Config de endianness ====== // 0: usa float lido direto; 1: faz word-swap (DTS6619 em alguns firmwares) #ifndef DTS6619_WORD_SWAP #define DTS6619_WORD_SWAP 0 #endif static inline float maybe_swap_float(float in) { #if DTS6619_WORD_SWAP // swap de words: 0-1-2-3 -> 2-3-0-1 float out; char *src = (char *)∈ char *dst = (char *)&out; dst[0] = src[2]; dst[1] = src[3]; dst[2] = src[0]; dst[3] = src[1]; return out; #else return in; #endif } // ============================================================================ // =================== MAPA DE REGISTROS DTS6619 (Input 0x04) =============== // Todos float32, 2 regs cada, endereços zero-based // Tensões #define DTS_L1VOLTAGE 0x0000 #define DTS_L2VOLTAGE 0x0002 #define DTS_L3VOLTAGE 0x0004 // Correntes (total e por fase) #define DTS_TOTALCURRENT 0x0006 #define DTS_L1CURRENT 0x0008 #define DTS_L2CURRENT 0x000A #define DTS_L3CURRENT 0x000C // Potências ativas #define DTS_TOTALACTIVEPOWER 0x0010 #define DTS_L1ACTIVEPOWER 0x0012 #define DTS_L2ACTIVEPOWER 0x0014 #define DTS_L3ACTIVEPOWER 0x0016 // Fator de potência (por fase) #define DTS_PF_L1 0x002A #define DTS_PF_L2 0x002C #define DTS_PF_L3 0x002E // Frequência #define DTS_FREQUENCY 0x0036 // Energia total ativa (Wh) #define DTS_TOTAL_ACTIVE_ENERGY 0x0100 // ============================================================================ // ============ CIDs ============ enum { CID_L1_VOLTAGE = 0, CID_L2_VOLTAGE, CID_L3_VOLTAGE, CID_L1_CURRENT, CID_L2_CURRENT, CID_L3_CURRENT, }; // ======= Descritores (usando INPUT registers) ======= const mb_parameter_descriptor_t device_parameters_dts6619[] = { {CID_L1_VOLTAGE, STR("L1 Voltage"), STR("V"), 1, MB_PARAM_INPUT, DTS_L1VOLTAGE, 2, HOLD_OFFSET(l1_voltage), PARAM_TYPE_FLOAT, 4, OPTS(0, 300, 0.1), PAR_PERMS_READ}, {CID_L2_VOLTAGE, STR("L2 Voltage"), STR("V"), 1, MB_PARAM_INPUT, DTS_L2VOLTAGE, 2, HOLD_OFFSET(l2_voltage), PARAM_TYPE_FLOAT, 4, OPTS(0, 300, 0.1), PAR_PERMS_READ}, {CID_L3_VOLTAGE, STR("L3 Voltage"), STR("V"), 1, MB_PARAM_INPUT, DTS_L3VOLTAGE, 2, HOLD_OFFSET(l3_voltage), PARAM_TYPE_FLOAT, 4, OPTS(0, 300, 0.1), PAR_PERMS_READ}, {CID_L1_CURRENT, STR("L1 Current"), STR("A"), 1, MB_PARAM_INPUT, DTS_L1CURRENT, 2, HOLD_OFFSET(l1_current), PARAM_TYPE_FLOAT, 4, OPTS(0, 1000, 0.1), PAR_PERMS_READ}, {CID_L2_CURRENT, STR("L2 Current"), STR("A"), 1, MB_PARAM_INPUT, DTS_L2CURRENT, 2, HOLD_OFFSET(l2_current), PARAM_TYPE_FLOAT, 4, OPTS(0, 1000, 0.1), PAR_PERMS_READ}, {CID_L3_CURRENT, STR("L3 Current"), STR("A"), 1, MB_PARAM_INPUT, DTS_L3CURRENT, 2, HOLD_OFFSET(l3_current), PARAM_TYPE_FLOAT, 4, OPTS(0, 1000, 0.1), PAR_PERMS_READ}, }; const uint16_t num_device_parameters_dts6619 = sizeof(device_parameters_dts6619) / sizeof(device_parameters_dts6619[0]); // ===== Ponteiro para a struct de holding (vinda do teu projeto) extern holding_reg_params_t holding_reg_params; // ===== Acesso a memória local usada pela stack static void *get_param_ptr(const mb_parameter_descriptor_t *param) { if (!param || param->param_offset == 0) return NULL; return ((uint8_t *)&holding_reg_params + param->param_offset - 1); } // ===== Post do evento de medição static void meter_dts6619_post_event(float *voltage, float *current, int *power_w, float freq_hz, float pf_avg, float total_kwh) { meter_event_data_t evt = { .source = "GRID", .frequency = freq_hz, .power_factor = pf_avg, .total_energy = total_kwh}; memcpy(evt.vrms, voltage, sizeof(evt.vrms)); memcpy(evt.irms, current, sizeof(evt.irms)); memcpy(evt.watt, power_w, sizeof(evt.watt)); esp_err_t err = esp_event_post(METER_EVENT, METER_EVENT_DATA_READY, &evt, sizeof(evt), pdMS_TO_TICKS(10)); if (err != ESP_OK) { ESP_LOGW(TAG, "Falha ao emitir evento: %s", esp_err_to_name(err)); } } // ===== Task de polling static void serial_mdb_task(void *param) { esp_err_t err; const mb_parameter_descriptor_t *desc = NULL; float v[3] = {0}, i[3] = {0}, p_ph[3] = {0}; float p_total = 0.0f, pf[3] = {0}, freq = 0.0f, e_total_wh = 0.0f; // pequeno settle antes da 1ª leitura vTaskDelay(pdMS_TO_TICKS(200)); while (1) { for (uint16_t cid = 0; cid < num_device_parameters_dts6619; cid++) { err = mbc_master_get_cid_info(cid, &desc); if (err != ESP_OK || !desc) continue; void *data_ptr = get_param_ptr(desc); uint8_t type = 0; // 1 retry simples em caso de timeout err = mbc_master_get_parameter(cid, (char *)desc->param_key, (uint8_t *)data_ptr, &type); if (err == ESP_ERR_TIMEOUT) { vTaskDelay(pdMS_TO_TICKS(60)); err = mbc_master_get_parameter(cid, (char *)desc->param_key, (uint8_t *)data_ptr, &type); } if (err == ESP_OK && data_ptr) { float raw = *(float *)data_ptr; float val = maybe_swap_float(raw); // logging enxuto ESP_LOGI(TAG, "%s: %.3f %s", desc->param_key, val, desc->param_units); switch (cid) { case CID_L1_VOLTAGE: v[0] = val; break; case CID_L2_VOLTAGE: v[1] = val; break; case CID_L3_VOLTAGE: v[2] = val; break; case CID_L1_CURRENT: i[0] = val; break; case CID_L2_CURRENT: i[1] = val; break; case CID_L3_CURRENT: i[2] = val; break; default: break; } } else { ESP_LOGE(TAG, "CID %u (%s) read failed: %s", cid, desc->param_key, esp_err_to_name(err)); } vTaskDelay(POLL_INTERVAL); } // prepara payload do evento int p_int[3] = { (int)(p_ph[0]), (int)(p_ph[1]), (int)(p_ph[2])}; // PF médio simples (ignora zeros) float pf_sum = 0.0f; int pf_cnt = 0; for (int k = 0; k < 3; ++k) { if (pf[k] != 0.0f) { pf_sum += pf[k]; pf_cnt++; } } float pf_avg = (pf_cnt ? pf_sum / pf_cnt : 0.0f); // energia em kWh se veio em Wh float total_kwh = e_total_wh / 1000.0f; meter_dts6619_post_event(v, i, p_int, freq, pf_avg, total_kwh); vTaskDelay(UPDATE_INTERVAL); } } // ============ Init / Start / Stop ============ esp_err_t meter_dts6619_init(void) { if (is_initialized) { ESP_LOGW(TAG, "Already initialized"); return ESP_ERR_INVALID_STATE; } // limpa UART se já houver driver if (uart_is_driver_installed(MB_PORT_NUM)) { uart_driver_delete(MB_PORT_NUM); ESP_LOGI(TAG, "UART driver deleted"); } // destruir master anterior (ignora erro se não estiver init) (void)mbc_master_destroy(); mb_communication_info_t comm = { .port = MB_PORT_NUM, .mode = MB_MODE_RTU, .baudrate = MB_DEV_SPEED, .parity = UART_PARITY_EVEN}; void *handler = NULL; ESP_ERROR_CHECK(mbc_master_init(MB_PORT_SERIAL_MASTER, &handler)); ESP_ERROR_CHECK(mbc_master_setup(&comm)); ESP_ERROR_CHECK(uart_set_pin(MB_PORT_NUM, MB_UART_TXD, MB_UART_RXD, MB_UART_RTS, UART_PIN_NO_CHANGE)); ESP_ERROR_CHECK(mbc_master_start()); ESP_ERROR_CHECK(uart_set_mode(MB_PORT_NUM, UART_MODE_RS485_HALF_DUPLEX)); vTaskDelay(pdMS_TO_TICKS(50)); ESP_ERROR_CHECK(mbc_master_set_descriptor(device_parameters_dts6619, num_device_parameters_dts6619)); is_initialized = true; ESP_LOGI(TAG, "DTS6619 Modbus master initialized (9600 8E1, Input Reg 0x04)"); return ESP_OK; } esp_err_t meter_dts6619_start(void) { if (!is_initialized) { ESP_LOGE(TAG, "Not initialized"); return ESP_ERR_INVALID_STATE; } if (meter_task == NULL) { xTaskCreate(serial_mdb_task, "meter_dts6619_task", 4096, NULL, 3, &meter_task); ESP_LOGI(TAG, "Task started"); } return ESP_OK; } void meter_dts6619_stop(void) { if (!is_initialized) { ESP_LOGW(TAG, "Not initialized, skipping stop"); return; } if (meter_task) { vTaskDelete(meter_task); meter_task = NULL; ESP_LOGI(TAG, "Task stopped"); } (void)mbc_master_destroy(); if (uart_is_driver_installed(MB_PORT_NUM)) { uart_driver_delete(MB_PORT_NUM); ESP_LOGI(TAG, "UART driver deleted"); } is_initialized = false; ESP_LOGI(TAG, "Meter DTS6619 cleaned up"); }