new module

This commit is contained in:
2025-12-09 11:48:31 +00:00
parent 4820d9111e
commit e6e2622a95
98 changed files with 5349 additions and 8607 deletions

View File

@@ -0,0 +1,277 @@
/*
* The MIT License (MIT)
*
* Copyright (c) 2014 zeroday nodemcu.com
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
* -------------------------------------------------------------------------------
* Portions copyright (C) 2000 Dallas Semiconductor Corporation, under the
* following additional terms:
*
* Except as contained in this notice, the name of Dallas Semiconductor
* shall not be used except as stated in the Dallas Semiconductor
* Branding Policy.
*/
#ifndef ONEWIRE_H_
#define ONEWIRE_H_
#include <stdbool.h>
#include <stdint.h>
#include "driver/gpio.h"
/**
* Type used to hold all 1-Wire device ROM addresses (64-bit)
*/
typedef uint64_t onewire_addr_t;
/**
* Structure to contain the current state for onewire_search_next(), etc
*/
typedef struct
{
uint8_t rom_no[8];
uint8_t last_discrepancy;
bool last_device_found;
} onewire_search_t;
/**
* ::ONEWIRE_NONE is an invalid ROM address that will never occur in a device
* (CRC mismatch), and so can be useful as an indicator for "no-such-device",
* etc.
*/
#define ONEWIRE_NONE ((onewire_addr_t)(0xffffffffffffffffLL))
/**
* @brief Perform a 1-Wire reset cycle.
*
* @param pin The GPIO pin connected to the 1-Wire bus.
*
* @return `true` if at least one device responds with a presence pulse,
* `false` if no devices were detected (or the bus is shorted, etc)
*/
bool onewire_reset(gpio_num_t pin);
/**
* @brief Issue a 1-Wire "ROM select" command to select a particular device.
*
* It is necessary to call ::onewire_reset() before calling this function.
*
* @param pin The GPIO pin connected to the 1-Wire bus.
* @param addr The ROM address of the device to select
*
* @return `true` if the "ROM select" command could be successfully issued,
* `false` if there was an error.
*/
bool onewire_select(gpio_num_t pin, const onewire_addr_t addr);
/**
* @brief Issue a 1-Wire "skip ROM" command to select *all* devices on the bus.
*
* It is necessary to call ::onewire_reset() before calling this function.
*
* @param pin The GPIO pin connected to the 1-Wire bus.
*
* @return `true` if the "skip ROM" command could be successfully issued,
* `false` if there was an error.
*/
bool onewire_skip_rom(gpio_num_t pin);
/**
* @brief Write a byte on the onewire bus.
*
* The writing code uses open-drain mode and expects the pullup resistor to
* pull the line high when not driven low. If you need strong power after the
* write (e.g. DS18B20 in parasite power mode) then call ::onewire_power()
* after this is complete to actively drive the line high.
*
* @param pin The GPIO pin connected to the 1-Wire bus.
* @param v The byte value to write
*
* @return `true` if successful, `false` on error.
*/
bool onewire_write(gpio_num_t pin, uint8_t v);
/**
* @brief Write multiple bytes on the 1-Wire bus.
*
* See ::onewire_write() for more info.
*
* @param pin The GPIO pin connected to the 1-Wire bus.
* @param buf A pointer to the buffer of bytes to be written
* @param count Number of bytes to write
*
* @return `true` if all bytes written successfully, `false` on error.
*/
bool onewire_write_bytes(gpio_num_t pin, const uint8_t *buf, size_t count);
/**
* @brief Read a byte from a 1-Wire device.
*
* @param pin The GPIO pin connected to the 1-Wire bus.
*
* @return the read byte on success, negative value on error.
*/
int onewire_read(gpio_num_t pin);
/**
* @brief Read multiple bytes from a 1-Wire device.
*
* @param pin The GPIO pin connected to the 1-Wire bus.
* @param[out] buf A pointer to the buffer to contain the read bytes
* @param count Number of bytes to read
*
* @return `true` on success, `false` on error.
*/
bool onewire_read_bytes(gpio_num_t pin, uint8_t *buf, size_t count);
/**
* @brief Actively drive the bus high to provide extra power for certain
* operations of parasitically-powered devices.
*
* For parasitically-powered devices which need more power than can be
* provided via the normal pull-up resistor, it may be necessary for some
* operations to drive the bus actively high. This function can be used to
* perform that operation.
*
* The bus can be depowered once it is no longer needed by calling
* ::onewire_depower(), or it will be depowered automatically the next time
* ::onewire_reset() is called to start another command.
*
* @note Make sure the device(s) you are powering will not pull more current
* than the ESP32/ESP8266 is able to supply via its GPIO pins (this is
* especially important when multiple devices are on the same bus and
* they are all performing a power-intensive operation at the same time
* (i.e. multiple DS18B20 sensors, which have all been given a
* "convert T" operation by using ::onewire_skip_rom())).
*
* @note This routine will check to make sure that the bus is already high
* before driving it, to make sure it doesn't attempt to drive it high
* while something else is pulling it low (which could cause a reset or
* damage the ESP32/ESP8266).
*
* @param pin The GPIO pin connected to the 1-Wire bus.
*
* @return `true` on success, `false` on error.
*/
bool onewire_power(gpio_num_t pin);
/**
* @brief Stop forcing power onto the bus.
*
* You only need to do this if you previously called ::onewire_power() to drive
* the bus high and now want to allow it to float instead. Note that
* onewire_reset() will also automatically depower the bus first, so you do
* not need to call this first if you just want to start a new operation.
*
* @param pin The GPIO pin connected to the 1-Wire bus.
*/
void onewire_depower(gpio_num_t pin);
/**
* @brief Clear the search state so that it will start from the beginning on
* the next call to ::onewire_search_next().
*
* @param[out] search The onewire_search_t structure to reset.
*/
void onewire_search_start(onewire_search_t *search);
/**
* @brief Setup the search to search for devices with the specified
* "family code".
*
* @param[out] search The onewire_search_t structure to update.
* @param family_code The "family code" to search for.
*/
void onewire_search_prefix(onewire_search_t *search, uint8_t family_code);
/**
* @brief Search for the next device on the bus.
*
* The order of returned device addresses is deterministic. You will always
* get the same devices in the same order.
*
* @note It might be a good idea to check the CRC to make sure you didn't get
* garbage.
*
* @return the address of the next device on the bus, or ::ONEWIRE_NONE if
* there is no next address. ::ONEWIRE_NONE might also mean that
* the bus is shorted, there are no devices, or you have already
* retrieved all of them.
*/
onewire_addr_t onewire_search_next(onewire_search_t *search, gpio_num_t pin);
/**
* @brief Compute a Dallas Semiconductor 8 bit CRC.
*
* These are used in the ROM address and scratchpad registers to verify the
* transmitted data is correct.
*/
uint8_t onewire_crc8(const uint8_t *data, uint8_t len);
/**
* @brief Compute the 1-Wire CRC16 and compare it against the received CRC.
*
* Example usage (reading a DS2408):
* @code{.c}
* // Put everything in a buffer so we can compute the CRC easily.
* uint8_t buf[13];
* buf[0] = 0xF0; // Read PIO Registers
* buf[1] = 0x88; // LSB address
* buf[2] = 0x00; // MSB address
* onewire_write_bytes(pin, buf, 3); // Write 3 cmd bytes
* onewire_read_bytes(pin, buf+3, 10); // Read 6 data bytes, 2 0xFF, 2 CRC16
* if (!onewire_check_crc16(buf, 11, &buf[11])) {
* // TODO: Handle error.
* }
* @endcode
*
* @param input Array of bytes to checksum.
* @param len Number of bytes in `input`
* @param inverted_crc The two CRC16 bytes in the received data.
* This should just point into the received data,
* *not* at a 16-bit integer.
* @param crc_iv The crc starting value (optional)
*
* @return `true` if the CRC matches, `false` otherwise.
*/
bool onewire_check_crc16(const uint8_t* input, size_t len, const uint8_t* inverted_crc, uint16_t crc_iv);
/**
* @brief Compute a Dallas Semiconductor 16 bit CRC.
*
* This is required to check the integrity of data received from many 1-Wire
* devices. Note that the CRC computed here is *not* what you'll get from the
* 1-Wire network, for two reasons:
*
* 1. The CRC is transmitted bitwise inverted.
* 2. Depending on the endian-ness of your processor, the binary
* representation of the two-byte return value may have a different
* byte order than the two bytes you get from 1-Wire.
*
* @param input Array of bytes to checksum.
* @param len How many bytes are in `input`.
* @param crc_iv The crc starting value (optional)
*
* @return the CRC16, as defined by Dallas Semiconductor.
*/
uint16_t onewire_crc16(const uint8_t* input, size_t len, uint16_t crc_iv);
#endif /* ONEWIRE_H_ */