new release

This commit is contained in:
2025-11-20 07:45:00 +00:00
parent 96b2ab1f57
commit 4820d9111e
106 changed files with 4264 additions and 15581 deletions

View File

@@ -4,6 +4,7 @@
#include "esp_log.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/semphr.h"
#include "input_filter.h"
#include "nvs_flash.h"
#include "nvs.h"
@@ -25,6 +26,16 @@ static const char *TAG = "loadbalancer";
#define MIN_GRID_CURRENT_LIMIT 6 // A
#define MAX_GRID_CURRENT_LIMIT 100 // A
// Pequena tolerância para considerar "sem margem"
#define AVAILABLE_EPS 1.0f
// Histerese de suspensão / retoma (em torno dos 6A)
#define LB_SUSPEND_THRESHOLD 5.0f // abaixo disto -> suspende
#define LB_RESUME_THRESHOLD 7.0f // acima disto -> pode retomar
// Timeout para perda de medição de GRID (fail-safe)
#define GRID_METER_TIMEOUT_US (10LL * 1000000LL) // 30 segundos
// Parâmetros
static uint8_t max_grid_current = MAX_GRID_CURRENT_LIMIT;
static bool loadbalancer_enabled = false;
@@ -34,9 +45,14 @@ static float evse_current = 0.0f;
static input_filter_t grid_filter;
static input_filter_t evse_filter;
static int64_t last_grid_timestamp_us = 0; // última atualização de medição GRID
#define MAX_SLAVES 255
#define CONNECTOR_COUNT (MAX_SLAVES + 1)
// Proteção simples de concorrência
static SemaphoreHandle_t lb_mutex = NULL;
// Estrutura unificada para master e slaves
typedef struct
{
@@ -45,9 +61,12 @@ typedef struct
bool charging;
float hw_max_current;
float runtime_current;
int64_t timestamp; // microssegundos
int64_t timestamp; // microssegundos (última métrica EVSE/slave)
bool online;
float assigned;
float assigned; // limite calculado pelo LB
int64_t started_us; // início da sessão de carregamento (para prioridade)
uint16_t last_limit; // último max_current enviado
bool suspended_by_lb; // flag de suspensão por LB (para histerese)
} evse_connector_t;
static evse_connector_t connectors[CONNECTOR_COUNT];
@@ -66,7 +85,11 @@ static void init_connectors(void)
.runtime_current = 0,
.timestamp = 0,
.online = false,
.assigned = 0.0f};
.assigned = 0.0f,
.started_us = 0,
.last_limit = 0,
.suspended_by_lb = false};
// slaves em 1..CONNECTOR_COUNT-1
for (int i = 1; i < CONNECTOR_COUNT; i++)
{
@@ -78,7 +101,10 @@ static void init_connectors(void)
.runtime_current = 0.0f,
.timestamp = 0,
.online = false,
.assigned = 0.0f};
.assigned = 0.0f,
.started_us = 0,
.last_limit = 0,
.suspended_by_lb = false};
}
}
@@ -100,12 +126,30 @@ static void on_slave_status(void *handler_arg, esp_event_base_t base, int32_t id
}
int idx = status->slave_id + 1; // slaves começam no índice 1
bool was_charging;
if (lb_mutex)
xSemaphoreTake(lb_mutex, portMAX_DELAY);
was_charging = connectors[idx].charging;
connectors[idx].charging = status->charging;
connectors[idx].hw_max_current = status->hw_max_current;
connectors[idx].runtime_current = status->runtime_current;
connectors[idx].timestamp = esp_timer_get_time();
connectors[idx].online = true;
// Se começou agora a carregar, marca início da sessão
if (status->charging && !was_charging)
{
connectors[idx].started_us = connectors[idx].timestamp;
connectors[idx].suspended_by_lb = false; // reset
}
if (lb_mutex)
xSemaphoreGive(lb_mutex);
ESP_LOGI(TAG,
"Slave %d status: charging=%d hw_max_current=%.1fA runtime_current=%.2fA",
status->slave_id, status->charging,
@@ -120,33 +164,62 @@ static void on_evse_config_event(void *handler_arg,
const evse_config_event_data_t *evt = (const evse_config_event_data_t *)event_data;
int idx = 0; // MASTER INDICE 0
if (lb_mutex)
xSemaphoreTake(lb_mutex, portMAX_DELAY);
connectors[idx].charging = evt->charging;
connectors[idx].hw_max_current = evt->hw_max_current;
connectors[idx].runtime_current = evt->runtime_current;
connectors[idx].timestamp = esp_timer_get_time();
connectors[idx].online = true;
if (!evt->charging)
{
connectors[idx].suspended_by_lb = false;
}
if (lb_mutex)
xSemaphoreGive(lb_mutex);
ESP_LOGI(TAG, "EVSE config updated: charging=%d hw_max_current=%.1f runtime_current=%.1f",
evt->charging, evt->hw_max_current, evt->runtime_current);
}
// --- Handlers de eventos externos ---
static void loadbalancer_meter_event_handler(void *handler_arg,
esp_event_base_t base,
int32_t id,
void *event_data)
static void loadbalancer_meter_event_handler(void *handler_arg, esp_event_base_t base, int32_t id, void *event_data)
{
if (id != METER_EVENT_DATA_READY || event_data == NULL)
return;
const meter_event_data_t *evt = (const meter_event_data_t *)event_data;
float max_irms = evt->irms[0];
for (int i = 1; i < 3; ++i)
{
if (evt->irms[i] > max_irms)
{
max_irms = evt->irms[i];
}
}
float max_vrms = evt->vrms[0];
for (int i = 1; i < 3; ++i)
{
if (evt->vrms[i] > max_vrms)
{
max_vrms = evt->vrms[i];
}
}
if (lb_mutex)
xSemaphoreTake(lb_mutex, portMAX_DELAY);
if (evt->source && strcmp(evt->source, "GRID") == 0)
{
grid_current = input_filter_update(&grid_filter, max_irms);
last_grid_timestamp_us = esp_timer_get_time();
ESP_LOGI(TAG, "GRID IRMS (filtered): %.2f A", grid_current);
ESP_LOGI(TAG, "GRID VRMS: %.2f V", max_vrms);
}
else if (evt->source && strcmp(evt->source, "EVSE") == 0)
{
@@ -157,6 +230,9 @@ static void loadbalancer_meter_event_handler(void *handler_arg,
{
ESP_LOGW(TAG, "Unknown meter event source: %s", evt->source);
}
if (lb_mutex)
xSemaphoreGive(lb_mutex);
}
static void loadbalancer_evse_event_handler(void *handler_arg,
@@ -166,6 +242,9 @@ static void loadbalancer_evse_event_handler(void *handler_arg,
{
const evse_state_event_data_t *evt = (const evse_state_event_data_t *)event_data;
if (lb_mutex)
xSemaphoreTake(lb_mutex, portMAX_DELAY);
switch (evt->state)
{
case EVSE_STATE_EVENT_IDLE:
@@ -175,29 +254,45 @@ static void loadbalancer_evse_event_handler(void *handler_arg,
evt->state == EVSE_STATE_EVENT_IDLE ? "dis" : "");
connectors[0].charging = false;
connectors[0].online = true; // master está sempre online
connectors[0].suspended_by_lb = false;
break;
case EVSE_STATE_EVENT_CHARGING:
{
ESP_LOGI(TAG, "Local EVSE is CHARGING - resetting filters");
grid_current = 0.0f;
evse_current = 0.0f;
input_filter_reset(&grid_filter);
input_filter_reset(&evse_filter);
bool was_charging = connectors[0].charging;
connectors[0].charging = true;
connectors[0].online = true;
connectors[0].timestamp = esp_timer_get_time();
if (!was_charging)
{
connectors[0].started_us = connectors[0].timestamp;
connectors[0].suspended_by_lb = false;
}
break;
}
case EVSE_STATE_EVENT_FAULT:
ESP_LOGW(TAG, "Local EVSE is in FAULT state - disabling load balancing temporarily");
connectors[0].charging = false;
connectors[0].online = true; // EVSE está online mas com falha
connectors[0].suspended_by_lb = false;
break;
default:
ESP_LOGW(TAG, "Unknown EVSE state: %d", evt->state);
break;
}
if (lb_mutex)
xSemaphoreGive(lb_mutex);
}
// --- Config persistência ---
@@ -207,8 +302,10 @@ static esp_err_t loadbalancer_load_config()
esp_err_t err = nvs_open("loadbalancing", NVS_READWRITE, &handle);
if (err != ESP_OK)
return err;
bool needs_commit = false;
uint8_t temp_u8;
err = nvs_get_u8(handle, "max_grid_curr", &temp_u8);
if (err == ESP_OK && temp_u8 >= MIN_GRID_CURRENT_LIMIT && temp_u8 <= MAX_GRID_CURRENT_LIMIT)
max_grid_current = temp_u8;
@@ -218,6 +315,7 @@ static esp_err_t loadbalancer_load_config()
nvs_set_u8(handle, "max_grid_curr", max_grid_current);
needs_commit = true;
}
err = nvs_get_u8(handle, "enabled", &temp_u8);
if (err == ESP_OK && temp_u8 <= 1)
loadbalancer_enabled = (temp_u8 != 0);
@@ -227,6 +325,7 @@ static esp_err_t loadbalancer_load_config()
nvs_set_u8(handle, "enabled", 0);
needs_commit = true;
}
if (needs_commit)
nvs_commit(handle);
nvs_close(handle);
@@ -280,7 +379,7 @@ void loadbalancer_task(void *param)
{
if (!loadbalancer_is_enabled())
{
vTaskDelay(pdMS_TO_TICKS(5000));
vTaskDelay(pdMS_TO_TICKS(30000));
continue;
}
@@ -289,9 +388,11 @@ void loadbalancer_task(void *param)
int64_t now = esp_timer_get_time();
// --- Atualiza estado online e conta ativos ---
if (lb_mutex)
xSemaphoreTake(lb_mutex, portMAX_DELAY);
for (int i = 0; i < CONNECTOR_COUNT; i++)
{
// --- Master nunca pode ficar offline ---
if (connectors[i].is_master)
{
@@ -334,79 +435,312 @@ void loadbalancer_task(void *param)
}
}
// snapshot de grid_current e last_grid_timestamp sob mutex
float grid_snapshot = grid_current;
int64_t last_grid_ts_snapshot = last_grid_timestamp_us;
if (lb_mutex)
xSemaphoreGive(lb_mutex);
ESP_LOGI(TAG, "Active connectors: %d", active_cnt);
// --- Calcula corrente disponível ---
float available = max_grid_current - grid_current;
if (available < MIN_CHARGING_CURRENT_LIMIT)
if (active_cnt == 0)
{
available = MIN_CHARGING_CURRENT_LIMIT;
vTaskDelay(pdMS_TO_TICKS(5000));
continue;
}
else if (available > max_grid_current)
{
available = max_grid_current;
}
ESP_LOGI(TAG, "LB Calc: available=%.1fA, active_connectors=%d", available, active_cnt);
// --- Ordena conectores por hw_max_current (bubble sort simples) ---
for (int a = 0; a < active_cnt - 1; a++)
// --- Verifica timeout de medição de GRID (fail-safe) ---
bool meter_timeout = (last_grid_ts_snapshot == 0 ||
(now - last_grid_ts_snapshot) > GRID_METER_TIMEOUT_US);
if (meter_timeout)
{
for (int b = 0; b < active_cnt - 1 - a; b++)
ESP_LOGW(TAG,
"GRID meter timeout (last update=%lld us ago). Applying fail-safe limits (<=%dA).",
(long long)(now - last_grid_ts_snapshot), MIN_CHARGING_CURRENT_LIMIT);
if (lb_mutex)
xSemaphoreTake(lb_mutex, portMAX_DELAY);
// Fail-safe: limitar cada EV ao mínimo permitido (6A) ou menos, nunca aumentar
for (int k = 0; k < active_cnt; k++)
{
if (connectors[idxs[b]].hw_max_current > connectors[idxs[b + 1]].hw_max_current)
int i = idxs[k];
float cur = connectors[i].runtime_current;
if (cur > MIN_CHARGING_CURRENT_LIMIT)
connectors[i].assigned = (float)MIN_CHARGING_CURRENT_LIMIT;
else
connectors[i].assigned = cur;
}
if (lb_mutex)
xSemaphoreGive(lb_mutex);
}
// --- Calcula corrente disponível (headroom global) ---
float available = (float)max_grid_current - grid_snapshot;
ESP_LOGI(TAG, "LB raw headroom: max_grid=%uA, grid_current=%.1fA, available=%.2fA",
max_grid_current, grid_snapshot, available);
// ==========================
// ZONA A: overload significativo -> reduzir correntes (throttling)
// ==========================
if (available < -AVAILABLE_EPS)
{
ESP_LOGW(TAG, "Overload: grid=%.1fA, max=%.1fA (available=%.2fA) -> throttling",
grid_snapshot, (float)max_grid_current, available);
float factor = ((float)max_grid_current) / grid_snapshot;
if (factor < 0.0f)
factor = 0.0f;
if (factor > 1.0f)
factor = 1.0f;
if (lb_mutex)
xSemaphoreTake(lb_mutex, portMAX_DELAY);
for (int k = 0; k < active_cnt; k++)
{
int i = idxs[k];
connectors[i].assigned = connectors[i].runtime_current * factor;
ESP_LOGI(TAG,
"Connector[%d] overload throttling: runtime=%.1fA -> assigned=%.1fA",
i, connectors[i].runtime_current, connectors[i].assigned);
}
if (lb_mutex)
xSemaphoreGive(lb_mutex);
}
// ==========================
// ZONA B: sem margem prática -> manter correntes atuais como limites
// ==========================
else if (fabsf(available) <= AVAILABLE_EPS)
{
ESP_LOGI(TAG,
"No effective headroom: grid=%.1fA, max=%.1fA (available=%.2fA). Keeping current as limit.",
grid_snapshot, (float)max_grid_current, available);
if (lb_mutex)
xSemaphoreTake(lb_mutex, portMAX_DELAY);
for (int k = 0; k < active_cnt; k++)
{
int i = idxs[k];
connectors[i].assigned = connectors[i].runtime_current;
ESP_LOGI(TAG,
"Connector[%d] keep runtime as limit: assigned=%.1fA",
i, connectors[i].assigned);
}
if (lb_mutex)
xSemaphoreGive(lb_mutex);
}
// ==========================
// ZONA C: há margem positiva -> garantir mínimo e depois water-filling SOBRE assigned
// ==========================
else // available > AVAILABLE_EPS
{
if (available > max_grid_current)
{
available = (float)max_grid_current;
}
ESP_LOGI(TAG, "LB Calc (zone C): available=%.1fA, active_connectors=%d",
available, active_cnt);
if (lb_mutex)
xSemaphoreTake(lb_mutex, portMAX_DELAY);
// 1) Ordenar conectores ativos por started_us (mais antigos primeiro)
for (int a = 0; a < active_cnt - 1; a++)
{
for (int b = 0; b < active_cnt - 1 - a; b++)
{
int tmp = idxs[b];
idxs[b] = idxs[b + 1];
idxs[b + 1] = tmp;
int i1 = idxs[b];
int i2 = idxs[b + 1];
if (connectors[i1].started_us > connectors[i2].started_us)
{
int tmp = idxs[b];
idxs[b] = idxs[b + 1];
idxs[b + 1] = tmp;
}
}
}
// Inicialmente: assigned = runtime_current
for (int k = 0; k < active_cnt; k++)
{
int i = idxs[k];
connectors[i].assigned = connectors[i].runtime_current;
}
float remaining = available; // margem extra total
// 2) FASE 1: tentar garantir pelo menos 6A (ou hw_max, se menor) aos mais antigos
for (int k = 0; k < active_cnt && remaining > 0.0f; k++)
{
int i = idxs[k];
float current = connectors[i].runtime_current;
float hw_max = connectors[i].hw_max_current;
float target_min = (float)MIN_CHARGING_CURRENT_LIMIT;
if (hw_max < target_min)
target_min = hw_max;
if (current >= target_min)
{
connectors[i].assigned = current;
continue;
}
float delta = target_min - current;
if (delta <= remaining)
{
connectors[i].assigned = current + delta;
remaining -= delta;
}
else
{
connectors[i].assigned = current;
}
}
// 3) FASE 2: "last in, first cut" -> cortar quem ficou abaixo do mínimo começando pelos mais recentes
for (int k = active_cnt - 1; k >= 0; k--)
{
int i = idxs[k];
if (connectors[i].assigned >= MIN_CHARGING_CURRENT_LIMIT)
{
continue;
}
ESP_LOGI(TAG, "Connector[%d] below min after phase1 (assigned=%.1fA) -> suspending (0A)",
i, connectors[i].assigned);
connectors[i].assigned = 0.0f;
connectors[i].suspended_by_lb = true;
}
// 4) FASE 3: se ainda sobrar margem, distribuir extra por cima dos que ficaram ON (assigned > 0)
if (remaining > AVAILABLE_EPS)
{
int on_cnt = 0;
for (int k = 0; k < active_cnt; k++)
{
int i = idxs[k];
if (connectors[i].assigned > 0.0f)
on_cnt++;
}
float extra_remaining = remaining;
int extra_cnt = on_cnt;
for (int k = 0; k < active_cnt; k++)
{
int i = idxs[k];
if (connectors[i].assigned <= 0.0f)
continue;
if (extra_cnt <= 0 || extra_remaining <= 0.0f)
break;
float headroom = connectors[i].hw_max_current - connectors[i].assigned;
if (headroom <= 0.0f)
{
extra_cnt--;
continue;
}
float share = extra_remaining / (float)extra_cnt;
if (share >= headroom)
{
connectors[i].assigned += headroom;
extra_remaining -= headroom;
extra_cnt--;
}
else
{
for (int m = k; m < active_cnt; m++)
{
int j = idxs[m];
if (connectors[j].assigned <= 0.0f)
continue;
float headroom_j = connectors[j].hw_max_current - connectors[j].assigned;
if (headroom_j <= 0.0f)
continue;
float inc = MIN(share, headroom_j);
connectors[j].assigned += inc;
}
break;
}
}
}
if (lb_mutex)
xSemaphoreGive(lb_mutex);
}
// --- Distribui corrente (water-filling) ---
float remaining = available;
int remaining_cnt = active_cnt;
// --- Publicação de limites / suspensão com histerese ---
if (lb_mutex)
xSemaphoreTake(lb_mutex, portMAX_DELAY);
for (int k = 0; k < active_cnt; k++)
{
int i = idxs[k];
float share = remaining / remaining_cnt;
if (share >= connectors[i].hw_max_current)
float assigned = connectors[i].assigned;
float effective = assigned;
// Histerese de suspensão / retoma
if (connectors[i].suspended_by_lb)
{
connectors[i].assigned = connectors[i].hw_max_current;
remaining -= connectors[i].assigned;
remaining_cnt--;
// Está suspenso: só retoma se limite calculado for >= limiar de retoma
if (assigned >= LB_RESUME_THRESHOLD)
{
effective = assigned;
connectors[i].suspended_by_lb = false;
}
else
{
effective = 0.0f;
}
}
else
{
for (int m = k; m < active_cnt; m++)
// Ainda não está suspenso: só suspende se ficar claramente abaixo do limiar
if (assigned > 0.0f && assigned < LB_SUSPEND_THRESHOLD)
{
connectors[idxs[m]].assigned = share;
effective = 0.0f;
connectors[i].suspended_by_lb = true;
}
break;
}
}
// --- Aplica piso mínimo ---
for (int k = 0; k < active_cnt; k++)
{
int i = idxs[k];
if (connectors[i].assigned < MIN_CHARGING_CURRENT_LIMIT)
uint16_t max_cur;
if (effective <= 0.0f)
{
connectors[i].assigned = MIN_CHARGING_CURRENT_LIMIT;
max_cur = 0;
}
else
{
max_cur = (uint16_t)MIN(effective, (float)MAX_CHARGING_CURRENT_LIMIT);
}
}
// --- Publica limites de corrente ---
for (int k = 0; k < active_cnt; k++)
{
int i = idxs[k];
uint16_t max_cur = (uint16_t)MIN(connectors[i].assigned, MAX_CHARGING_CURRENT_LIMIT);
uint16_t current_rounded = (uint16_t)roundf(connectors[i].runtime_current);
if (current_rounded == max_cur)
// Evita flapping de comandos: só envia se o limite mudou
if (connectors[i].last_limit == max_cur)
{
continue; // sem alteração
}
connectors[i].last_limit = max_cur;
if (lb_mutex)
xSemaphoreGive(lb_mutex);
if (connectors[i].is_master)
{
loadbalancer_master_limit_event_t master_evt = {
@@ -415,8 +749,8 @@ void loadbalancer_task(void *param)
.timestamp_us = now};
esp_event_post(LOADBALANCER_EVENTS, LOADBALANCER_EVENT_MASTER_CURRENT_LIMIT,
&master_evt, sizeof(master_evt), portMAX_DELAY);
ESP_LOGI(TAG, "Master limit changed -> %.1f A (runtime=%.1f A)",
(float)max_cur, connectors[i].runtime_current);
ESP_LOGI(TAG, "Master limit changed -> %.1f A (assigned=%.2f A)",
(float)max_cur, assigned);
}
else
{
@@ -426,11 +760,17 @@ void loadbalancer_task(void *param)
.timestamp_us = now};
esp_event_post(LOADBALANCER_EVENTS, LOADBALANCER_EVENT_SLAVE_CURRENT_LIMIT,
&slave_evt, sizeof(slave_evt), portMAX_DELAY);
ESP_LOGI(TAG, "Slave %d limit changed -> %.1f A (runtime=%.1f A)",
connectors[i].id, (float)max_cur, connectors[i].runtime_current);
ESP_LOGI(TAG, "Slave %d limit changed -> %.1f A (assigned=%.2f A)",
connectors[i].id, (float)max_cur, assigned);
}
if (lb_mutex)
xSemaphoreTake(lb_mutex, portMAX_DELAY);
}
if (lb_mutex)
xSemaphoreGive(lb_mutex);
vTaskDelay(pdMS_TO_TICKS(5000));
}
}
@@ -441,6 +781,12 @@ void loadbalancer_init(void)
if (loadbalancer_load_config() != ESP_OK)
ESP_LOGW(TAG, "Failed to load/init config. Using defaults.");
lb_mutex = xSemaphoreCreateMutex();
if (lb_mutex == NULL)
{
ESP_LOGE(TAG, "Failed to create loadbalancer mutex");
}
init_connectors();
input_filter_init(&grid_filter, 0.3f);
input_filter_init(&evse_filter, 0.3f);
@@ -461,4 +807,4 @@ void loadbalancer_init(void)
ESP_ERROR_CHECK(esp_event_handler_register(LOADBALANCER_EVENTS, LOADBALANCER_EVENT_SLAVE_STATUS,
&on_slave_status, NULL));
}
}