new upgrade

This commit is contained in:
2025-12-21 23:28:26 +00:00
parent 82fa194bd8
commit 023644a887
99 changed files with 7457 additions and 7079 deletions

View File

@@ -6,13 +6,11 @@ set(srcs
"src/ac_relay.c"
"src/socket_lock.c"
"src/rcm.c"
"src/onewire.c"
"src/ds18x20.c"
"src/temp_sensor.c"
"src/ntc_sensor.c"
)
idf_component_register(SRCS "${srcs}"
INCLUDE_DIRS "include"
PRIV_REQUIRES nvs_flash driver esp_adc esp_timer
REQUIRES config evse ntc_driver spi_bus_manager)
PRIV_REQUIRES driver esp_adc esp_timer
REQUIRES config evse ntc_driver spi_bus_manager storage_service)

View File

@@ -1,12 +1,35 @@
// components/peripherals/include/adc121s021_dma.h
#ifndef ADC_DMA_H_
#define ADC_DMA_H_
#include <stdint.h>
#include <stdbool.h>
#ifdef __cplusplus
extern "C" {
#endif
/**
* @brief Inicializa o ADC121S021 no barramento SPI partilhado.
*
* - Garante que o spi_bus_manager foi inicializado.
* - Regista o dispositivo ADC no bus.
*/
void adc121s021_dma_init(void);
/**
* @brief Lê uma única amostra (12 bits) do ADC121S021.
*
* Esta função faz uma transação SPI bloqueante (polling), suficientemente
* rápida para uso em burst (100 amostras em ~23 ms).
*
* @param[out] sample Ponteiro onde será escrito o valor lido (0..4095).
* @return true em caso de sucesso, false se ocorrer erro.
*/
bool adc121s021_dma_get_sample(uint16_t *sample);
#ifdef __cplusplus
}
#endif
#endif /* ADC_DMA_h_ */
#endif /* ADC_DMA_H_ */

View File

@@ -1,254 +0,0 @@
/*
* Copyright (c) 2016 Grzegorz Hetman <ghetman@gmail.com>
* Copyright (c) 2016 Alex Stewart <foogod@gmail.com>
* Copyright (c) 2018 Ruslan V. Uss <unclerus@gmail.com>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of the copyright holder nor the names of itscontributors
* may be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef _DS18X20_H
#define _DS18X20_H
#include <esp_err.h>
#include "onewire.h"
typedef onewire_addr_t ds18x20_addr_t;
/** An address value which can be used to indicate "any device on the bus" */
#define DS18X20_ANY ONEWIRE_NONE
/** Family ID (lower address byte) of DS18B20 sensors */
#define DS18B20_FAMILY_ID 0x28
/** Family ID (lower address byte) of DS18S20 sensors */
#define DS18S20_FAMILY_ID 0x10
/**
* @brief Find the addresses of all ds18x20 devices on the bus.
*
* Scans the bus for all devices and places their addresses in the supplied
* array. If there are more than `addr_count` devices on the bus, only the
* first `addr_count` are recorded.
*
* @param pin The GPIO pin connected to the ds18x20 bus
* @param addr_list A pointer to an array of ::ds18x20_addr_t values.
* This will be populated with the addresses of the found
* devices.
* @param addr_count Number of slots in the `addr_list` array. At most this
* many addresses will be returned.
* @param found The number of devices found. Note that this may be less
* than, equal to, or more than `addr_count`, depending on
* how many ds18x20 devices are attached to the bus.
*
* @returns `ESP_OK` if the command was successfully issued
*/
esp_err_t ds18x20_scan_devices(gpio_num_t pin, ds18x20_addr_t *addr_list, size_t addr_count, size_t *found);
/**
* @brief Tell one or more sensors to perform a temperature measurement and
* conversion (CONVERT_T) operation.
*
* This operation can take up to 750ms to complete.
*
* If `wait=true`, this routine will automatically drive the pin high for the
* necessary 750ms after issuing the command to ensure parasitically-powered
* devices have enough power to perform the conversion operation (for
* non-parasitically-powered devices, this is not necessary but does not
* hurt). If `wait=false`, this routine will drive the pin high, but will
* then return immediately. It is up to the caller to wait the requisite time
* and then depower the bus using onewire_depower() or by issuing another
* command once conversion is done.
*
* @param pin The GPIO pin connected to the ds18x20 device
* @param addr The 64-bit address of the device on the bus. This can be set
* to ::DS18X20_ANY to send the command to all devices on the bus
* at the same time.
* @param wait Whether to wait for the necessary 750ms for the ds18x20 to
* finish performing the conversion before returning to the
* caller (You will normally want to do this).
*
* @returns `ESP_OK` if the command was successfully issued
*/
esp_err_t ds18x20_measure(gpio_num_t pin, ds18x20_addr_t addr, bool wait);
/**
* @brief Read the value from the last CONVERT_T operation.
*
* This should be called after ds18x20_measure() to fetch the result of the
* temperature measurement.
*
* @param pin The GPIO pin connected to the ds18x20 device
* @param addr The 64-bit address of the device to read. This can be set
* to ::DS18X20_ANY to read any device on the bus (but note
* that this will only work if there is exactly one device
* connected, or they will corrupt each others' transmissions)
* @param temperature The temperature in degrees Celsius
*
* @returns `ESP_OK` if the command was successfully issued
*/
esp_err_t ds18x20_read_temperature(gpio_num_t pin, ds18x20_addr_t addr, int16_t *temperature);
/**
* @brief Read the value from the last CONVERT_T operation (ds18b20 version).
*
* This should be called after ds18x20_measure() to fetch the result of the
* temperature measurement.
*
* @param pin The GPIO pin connected to the ds18x20 device
* @param addr The 64-bit address of the device to read. This can be set
* to ::DS18X20_ANY to read any device on the bus (but note
* that this will only work if there is exactly one device
* connected, or they will corrupt each others' transmissions)
* @param temperature The temperature in degrees Celsius
*
* @returns `ESP_OK` if the command was successfully issued
*/
esp_err_t ds18b20_read_temperature(gpio_num_t pin, ds18x20_addr_t addr, int16_t *temperature);
/**
* @brief Read the value from the last CONVERT_T operation (ds18s20 version).
*
* This should be called after ds18x20_measure() to fetch the result of the
* temperature measurement.
*
* @param pin The GPIO pin connected to the ds18x20 device
* @param addr The 64-bit address of the device to read. This can be set
* to ::DS18X20_ANY to read any device on the bus (but note
* that this will only work if there is exactly one device
* connected, or they will corrupt each others' transmissions)
* @param temperature The temperature in degrees Celsius
*
* @returns `ESP_OK` if the command was successfully issued
*/
esp_err_t ds18s20_read_temperature(gpio_num_t pin, ds18x20_addr_t addr, int16_t *temperature);
/**
* @brief Read the value from the last CONVERT_T operation for multiple devices.
*
* This should be called after ds18x20_measure() to fetch the result of the
* temperature measurement.
*
* @param pin The GPIO pin connected to the ds18x20 bus
* @param addr_list A list of addresses for devices to read.
* @param addr_count The number of entries in `addr_list`.
* @param result_list An array of int16_ts to hold the returned temperature
* values. It should have at least `addr_count` entries.
*
* @returns `ESP_OK` if all temperatures were fetched successfully
*/
esp_err_t ds18x20_read_temp_multi(gpio_num_t pin, ds18x20_addr_t *addr_list, size_t addr_count, int16_t *result_list);
/** Perform a ds18x20_measure() followed by ds18s20_read_temperature()
*
* @param pin The GPIO pin connected to the ds18s20 device
* @param addr The 64-bit address of the device to read. This can be set
* to ::DS18X20_ANY to read any device on the bus (but note
* that this will only work if there is exactly one device
* connected, or they will corrupt each others' transmissions)
* @param temperature The temperature in degrees Celsius
*/
esp_err_t ds18s20_measure_and_read(gpio_num_t pin, ds18x20_addr_t addr, int16_t *temperature);
/** Perform a ds18x20_measure() followed by ds18b20_read_temperature()
*
* @param pin The GPIO pin connected to the ds18x20 device
* @param addr The 64-bit address of the device to read. This can be set
* to ::DS18X20_ANY to read any device on the bus (but note
* that this will only work if there is exactly one device
* connected, or they will corrupt each others' transmissions)
* @param temperature The temperature in degrees Celsius
*/
esp_err_t ds18b20_measure_and_read(gpio_num_t pin, ds18x20_addr_t addr, int16_t *temperature);
/** Perform a ds18x20_measure() followed by ds18x20_read_temperature()
*
* @param pin The GPIO pin connected to the ds18x20 device
* @param addr The 64-bit address of the device to read. This can be set
* to ::DS18X20_ANY to read any device on the bus (but note
* that this will only work if there is exactly one device
* connected, or they will corrupt each others' transmissions)
* @param temperature The temperature in degrees Celsius
*/
esp_err_t ds18x20_measure_and_read(gpio_num_t pin, ds18x20_addr_t addr, int16_t *temperature);
/**
* @brief Perform a ds18x20_measure() followed by ds18x20_read_temp_multi()
*
* @param pin The GPIO pin connected to the ds18x20 bus
* @param addr_list A list of addresses for devices to read.
* @param addr_count The number of entries in `addr_list`.
* @param result_list An array of int16_ts to hold the returned temperature
* values. It should have at least `addr_count` entries.
*
* @returns `ESP_OK` if all temperatures were fetched successfully
*/
esp_err_t ds18x20_measure_and_read_multi(gpio_num_t pin, ds18x20_addr_t *addr_list, size_t addr_count, int16_t *result_list);
/**
* @brief Read the scratchpad data for a particular ds18x20 device.
*
* This is not generally necessary to do directly. It is done automatically
* as part of ds18x20_read_temperature().
*
* @param pin The GPIO pin connected to the ds18x20 device
* @param addr The 64-bit address of the device to read. This can be set
* to ::DS18X20_ANY to read any device on the bus (but note
* that this will only work if there is exactly one device
* connected, or they will corrupt each others' transmissions)
* @param buffer An 8-byte buffer to hold the read data.
*
* @returns `ESP_OK` if the command was successfully issued
*/
esp_err_t ds18x20_read_scratchpad(gpio_num_t pin, ds18x20_addr_t addr, uint8_t *buffer);
/**
* @brief Write the scratchpad data for a particular ds18x20 device.
*
* @param pin The GPIO pin connected to the ds18x20 device
* @param addr The 64-bit address of the device to write. This can be set
* to ::DS18X20_ANY to read any device on the bus (but note
* that this will only work if there is exactly one device
* connected, or they will corrupt each others' transmissions)
* @param buffer An 3-byte buffer to hold the data to write
*
* @returns `ESP_OK` if the command was successfully issued
*/
esp_err_t ds18x20_write_scratchpad(gpio_num_t pin, ds18x20_addr_t addr, uint8_t *buffer);
/**
* @brief Issue the copy scratchpad command, copying current scratchpad to
* EEPROM.
*
* @param pin The GPIO pin connected to the ds18x20 device
* @param addr The 64-bit address of the device to command. This can be set
* to ::DS18X20_ANY to read any device on the bus (but note
* that this will only work if there is exactly one device
* connected, or they will corrupt each others' transmissions)
*
* @returns `ESP_OK` if the command was successfully issued
*/
esp_err_t ds18x20_copy_scratchpad(gpio_num_t pin, ds18x20_addr_t addr);
#endif /* _DS18X20_H */

View File

@@ -1,277 +0,0 @@
/*
* The MIT License (MIT)
*
* Copyright (c) 2014 zeroday nodemcu.com
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
* -------------------------------------------------------------------------------
* Portions copyright (C) 2000 Dallas Semiconductor Corporation, under the
* following additional terms:
*
* Except as contained in this notice, the name of Dallas Semiconductor
* shall not be used except as stated in the Dallas Semiconductor
* Branding Policy.
*/
#ifndef ONEWIRE_H_
#define ONEWIRE_H_
#include <stdbool.h>
#include <stdint.h>
#include "driver/gpio.h"
/**
* Type used to hold all 1-Wire device ROM addresses (64-bit)
*/
typedef uint64_t onewire_addr_t;
/**
* Structure to contain the current state for onewire_search_next(), etc
*/
typedef struct
{
uint8_t rom_no[8];
uint8_t last_discrepancy;
bool last_device_found;
} onewire_search_t;
/**
* ::ONEWIRE_NONE is an invalid ROM address that will never occur in a device
* (CRC mismatch), and so can be useful as an indicator for "no-such-device",
* etc.
*/
#define ONEWIRE_NONE ((onewire_addr_t)(0xffffffffffffffffLL))
/**
* @brief Perform a 1-Wire reset cycle.
*
* @param pin The GPIO pin connected to the 1-Wire bus.
*
* @return `true` if at least one device responds with a presence pulse,
* `false` if no devices were detected (or the bus is shorted, etc)
*/
bool onewire_reset(gpio_num_t pin);
/**
* @brief Issue a 1-Wire "ROM select" command to select a particular device.
*
* It is necessary to call ::onewire_reset() before calling this function.
*
* @param pin The GPIO pin connected to the 1-Wire bus.
* @param addr The ROM address of the device to select
*
* @return `true` if the "ROM select" command could be successfully issued,
* `false` if there was an error.
*/
bool onewire_select(gpio_num_t pin, const onewire_addr_t addr);
/**
* @brief Issue a 1-Wire "skip ROM" command to select *all* devices on the bus.
*
* It is necessary to call ::onewire_reset() before calling this function.
*
* @param pin The GPIO pin connected to the 1-Wire bus.
*
* @return `true` if the "skip ROM" command could be successfully issued,
* `false` if there was an error.
*/
bool onewire_skip_rom(gpio_num_t pin);
/**
* @brief Write a byte on the onewire bus.
*
* The writing code uses open-drain mode and expects the pullup resistor to
* pull the line high when not driven low. If you need strong power after the
* write (e.g. DS18B20 in parasite power mode) then call ::onewire_power()
* after this is complete to actively drive the line high.
*
* @param pin The GPIO pin connected to the 1-Wire bus.
* @param v The byte value to write
*
* @return `true` if successful, `false` on error.
*/
bool onewire_write(gpio_num_t pin, uint8_t v);
/**
* @brief Write multiple bytes on the 1-Wire bus.
*
* See ::onewire_write() for more info.
*
* @param pin The GPIO pin connected to the 1-Wire bus.
* @param buf A pointer to the buffer of bytes to be written
* @param count Number of bytes to write
*
* @return `true` if all bytes written successfully, `false` on error.
*/
bool onewire_write_bytes(gpio_num_t pin, const uint8_t *buf, size_t count);
/**
* @brief Read a byte from a 1-Wire device.
*
* @param pin The GPIO pin connected to the 1-Wire bus.
*
* @return the read byte on success, negative value on error.
*/
int onewire_read(gpio_num_t pin);
/**
* @brief Read multiple bytes from a 1-Wire device.
*
* @param pin The GPIO pin connected to the 1-Wire bus.
* @param[out] buf A pointer to the buffer to contain the read bytes
* @param count Number of bytes to read
*
* @return `true` on success, `false` on error.
*/
bool onewire_read_bytes(gpio_num_t pin, uint8_t *buf, size_t count);
/**
* @brief Actively drive the bus high to provide extra power for certain
* operations of parasitically-powered devices.
*
* For parasitically-powered devices which need more power than can be
* provided via the normal pull-up resistor, it may be necessary for some
* operations to drive the bus actively high. This function can be used to
* perform that operation.
*
* The bus can be depowered once it is no longer needed by calling
* ::onewire_depower(), or it will be depowered automatically the next time
* ::onewire_reset() is called to start another command.
*
* @note Make sure the device(s) you are powering will not pull more current
* than the ESP32/ESP8266 is able to supply via its GPIO pins (this is
* especially important when multiple devices are on the same bus and
* they are all performing a power-intensive operation at the same time
* (i.e. multiple DS18B20 sensors, which have all been given a
* "convert T" operation by using ::onewire_skip_rom())).
*
* @note This routine will check to make sure that the bus is already high
* before driving it, to make sure it doesn't attempt to drive it high
* while something else is pulling it low (which could cause a reset or
* damage the ESP32/ESP8266).
*
* @param pin The GPIO pin connected to the 1-Wire bus.
*
* @return `true` on success, `false` on error.
*/
bool onewire_power(gpio_num_t pin);
/**
* @brief Stop forcing power onto the bus.
*
* You only need to do this if you previously called ::onewire_power() to drive
* the bus high and now want to allow it to float instead. Note that
* onewire_reset() will also automatically depower the bus first, so you do
* not need to call this first if you just want to start a new operation.
*
* @param pin The GPIO pin connected to the 1-Wire bus.
*/
void onewire_depower(gpio_num_t pin);
/**
* @brief Clear the search state so that it will start from the beginning on
* the next call to ::onewire_search_next().
*
* @param[out] search The onewire_search_t structure to reset.
*/
void onewire_search_start(onewire_search_t *search);
/**
* @brief Setup the search to search for devices with the specified
* "family code".
*
* @param[out] search The onewire_search_t structure to update.
* @param family_code The "family code" to search for.
*/
void onewire_search_prefix(onewire_search_t *search, uint8_t family_code);
/**
* @brief Search for the next device on the bus.
*
* The order of returned device addresses is deterministic. You will always
* get the same devices in the same order.
*
* @note It might be a good idea to check the CRC to make sure you didn't get
* garbage.
*
* @return the address of the next device on the bus, or ::ONEWIRE_NONE if
* there is no next address. ::ONEWIRE_NONE might also mean that
* the bus is shorted, there are no devices, or you have already
* retrieved all of them.
*/
onewire_addr_t onewire_search_next(onewire_search_t *search, gpio_num_t pin);
/**
* @brief Compute a Dallas Semiconductor 8 bit CRC.
*
* These are used in the ROM address and scratchpad registers to verify the
* transmitted data is correct.
*/
uint8_t onewire_crc8(const uint8_t *data, uint8_t len);
/**
* @brief Compute the 1-Wire CRC16 and compare it against the received CRC.
*
* Example usage (reading a DS2408):
* @code{.c}
* // Put everything in a buffer so we can compute the CRC easily.
* uint8_t buf[13];
* buf[0] = 0xF0; // Read PIO Registers
* buf[1] = 0x88; // LSB address
* buf[2] = 0x00; // MSB address
* onewire_write_bytes(pin, buf, 3); // Write 3 cmd bytes
* onewire_read_bytes(pin, buf+3, 10); // Read 6 data bytes, 2 0xFF, 2 CRC16
* if (!onewire_check_crc16(buf, 11, &buf[11])) {
* // TODO: Handle error.
* }
* @endcode
*
* @param input Array of bytes to checksum.
* @param len Number of bytes in `input`
* @param inverted_crc The two CRC16 bytes in the received data.
* This should just point into the received data,
* *not* at a 16-bit integer.
* @param crc_iv The crc starting value (optional)
*
* @return `true` if the CRC matches, `false` otherwise.
*/
bool onewire_check_crc16(const uint8_t* input, size_t len, const uint8_t* inverted_crc, uint16_t crc_iv);
/**
* @brief Compute a Dallas Semiconductor 16 bit CRC.
*
* This is required to check the integrity of data received from many 1-Wire
* devices. Note that the CRC computed here is *not* what you'll get from the
* 1-Wire network, for two reasons:
*
* 1. The CRC is transmitted bitwise inverted.
* 2. Depending on the endian-ness of your processor, the binary
* representation of the two-byte return value may have a different
* byte order than the two bytes you get from 1-Wire.
*
* @param input Array of bytes to checksum.
* @param len How many bytes are in `input`.
* @param crc_iv The crc starting value (optional)
*
* @return the CRC16, as defined by Dallas Semiconductor.
*/
uint16_t onewire_crc16(const uint8_t* input, size_t len, uint16_t crc_iv);
#endif /* ONEWIRE_H_ */

View File

@@ -1,28 +1,41 @@
// components/peripherals/src/adc121s021_dma.c
#include "driver/spi_master.h"
#include "esp_log.h"
#include "esp_err.h"
#include "adc121s021_dma.h"
#include "spi_bus_manager.h"
#define TAG "adc_dma"
#define PIN_NUM_CS 5
#define SAMPLE_SIZE_BYTES 2
#define ADC_BITS 12
#define SPI_CLOCK_HZ (6 * 1000 * 1000) // 6 MHz
// Pino de chip-select do ADC121S021 (ajusta se necessário)
#define PIN_NUM_CS 5
// ADC é 12-bit, mas transferimos 16 bits via SPI
#define ADC_BITS 12
// Clock SPI: 1 MHz → ~16 µs de transferência por amostra.
// Com um pequeno delay entre leituras, 100 amostras ficam em ~23 ms,
// o que é perfeito para analisar um PWM de 1 kHz a cada 100 ms.
#define SPI_CLOCK_HZ (1 * 1000 * 1000)
static spi_device_handle_t adc_spi = NULL;
void adc121s021_dma_init(void)
{
if (adc_spi) {
if (adc_spi)
{
ESP_LOGW(TAG, "ADC121S021 já foi inicializado.");
return;
}
if (!spi_bus_manager_is_initialized()) {
// Garante que o SPI bus partilhado está configurado
if (!spi_bus_manager_is_initialized())
{
ESP_LOGI(TAG, "SPI bus não inicializado. Inicializando...");
esp_err_t err = spi_bus_manager_init(); // 🔧 CORRIGIDO: sem argumentos
if (err != ESP_OK) {
esp_err_t err = spi_bus_manager_init();
if (err != ESP_OK)
{
ESP_LOGE(TAG, "Falha ao inicializar o SPI bus: %s", esp_err_to_name(err));
return;
}
@@ -32,44 +45,55 @@ void adc121s021_dma_init(void)
.clock_speed_hz = SPI_CLOCK_HZ,
.mode = 0,
.spics_io_num = PIN_NUM_CS,
.queue_size = 2,
.queue_size = 2, // suficiente para uso em burst
.flags = SPI_DEVICE_NO_DUMMY,
.pre_cb = NULL,
.post_cb = NULL,
};
esp_err_t err = spi_bus_add_device(spi_bus_manager_get_host(), &devcfg, &adc_spi);
if (err != ESP_OK) {
if (err != ESP_OK)
{
ESP_LOGE(TAG, "Falha ao registrar ADC121S021 no SPI: %s", esp_err_to_name(err));
adc_spi = NULL;
return;
}
ESP_LOGI(TAG, "ADC121S021 registrado no SPI com sucesso.");
ESP_LOGI(TAG, "ADC121S021 registrado no SPI (CS=%d, fSPI=%d Hz).",
PIN_NUM_CS, SPI_CLOCK_HZ);
}
bool adc121s021_dma_get_sample(uint16_t *sample)
{
if (!adc_spi) {
ESP_LOGE(TAG, "ADC SPI não inicializado!");
if (!sample)
{
return false;
}
uint8_t tx_buffer[2] = {0x00, 0x00}; // Dummy
if (!adc_spi)
{
ESP_LOGE(TAG, "ADC SPI não inicializado! Chama adc121s021_dma_init() primeiro.");
return false;
}
uint8_t tx_buffer[2] = {0x00, 0x00}; // Dummy (ADC só precisa de clock)
uint8_t rx_buffer[2] = {0};
spi_transaction_t t = {
.length = 16,
.length = 16, // 16 bits
.tx_buffer = tx_buffer,
.rx_buffer = rx_buffer,
.flags = 0
};
.flags = 0};
esp_err_t err = spi_device_transmit(adc_spi, &t);
if (err != ESP_OK) {
// Polling transmit → menor overhead que fila + espera.
esp_err_t err = spi_device_polling_transmit(adc_spi, &t);
if (err != ESP_OK)
{
ESP_LOGE(TAG, "Erro na transmissão SPI: %s", esp_err_to_name(err));
return false;
}
*sample = ((rx_buffer[0] << 8) | rx_buffer[1]) & 0x0FFF;
// ADC121S021 devolve os 12 bits mais significativos em 16 bits.
*sample = (uint16_t)(((rx_buffer[0] << 8) | rx_buffer[1]) & 0x0FFF);
return true;
}

View File

@@ -1,265 +0,0 @@
/*
* Copyright (c) 2016 Grzegorz Hetman <ghetman@gmail.com>
* Copyright (c) 2016 Alex Stewart <foogod@gmail.com>
* Copyright (c) 2018 Ruslan V. Uss <unclerus@gmail.com>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of the copyright holder nor the names of itscontributors
* may be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <math.h>
#include <esp_log.h>
#include <freertos/FreeRTOS.h>
#include <freertos/task.h>
#include "ds18x20.h"
#define ds18x20_WRITE_SCRATCHPAD 0x4E
#define ds18x20_READ_SCRATCHPAD 0xBE
#define ds18x20_COPY_SCRATCHPAD 0x48
#define ds18x20_READ_EEPROM 0xB8
#define ds18x20_READ_PWRSUPPLY 0xB4
#define ds18x20_SEARCHROM 0xF0
#define ds18x20_SKIP_ROM 0xCC
#define ds18x20_READROM 0x33
#define ds18x20_MATCHROM 0x55
#define ds18x20_ALARMSEARCH 0xEC
#define ds18x20_CONVERT_T 0x44
#define CHECK(x) do { esp_err_t __; if ((__ = x) != ESP_OK) return __; } while (0)
#define CHECK_ARG(VAL) do { if (!(VAL)) return ESP_ERR_INVALID_ARG; } while (0)
static portMUX_TYPE mux = portMUX_INITIALIZER_UNLOCKED;
static const char* TAG = "ds18x20";
esp_err_t ds18x20_measure(gpio_num_t pin, ds18x20_addr_t addr, bool wait)
{
if (!onewire_reset(pin))
return ESP_ERR_INVALID_RESPONSE;
if (addr == DS18X20_ANY)
onewire_skip_rom(pin);
else
onewire_select(pin, addr);
portENTER_CRITICAL(&mux);
onewire_write(pin, ds18x20_CONVERT_T);
// For parasitic devices, power must be applied within 10us after issuing
// the convert command.
onewire_power(pin);
portEXIT_CRITICAL(&mux);
if (wait){
vTaskDelay(pdMS_TO_TICKS(750));
onewire_depower(pin);
}
return ESP_OK;
}
esp_err_t ds18x20_read_scratchpad(gpio_num_t pin, ds18x20_addr_t addr, uint8_t* buffer)
{
CHECK_ARG(buffer);
uint8_t crc;
uint8_t expected_crc;
if (!onewire_reset(pin))
return ESP_ERR_INVALID_RESPONSE;
if (addr == DS18X20_ANY)
onewire_skip_rom(pin);
else
onewire_select(pin, addr);
onewire_write(pin, ds18x20_READ_SCRATCHPAD);
for (int i = 0; i < 8; i++)
buffer[i] = onewire_read(pin);
crc = onewire_read(pin);
expected_crc = onewire_crc8(buffer, 8);
if (crc != expected_crc)
{
ESP_LOGE(TAG, "CRC check failed reading scratchpad: %02x %02x %02x %02x %02x %02x %02x %02x : %02x (expected %02x)", buffer[0], buffer[1],
buffer[2], buffer[3], buffer[4], buffer[5], buffer[6], buffer[7], crc, expected_crc);
return ESP_ERR_INVALID_CRC;
}
return ESP_OK;
}
esp_err_t ds18x20_write_scratchpad(gpio_num_t pin, ds18x20_addr_t addr, uint8_t* buffer)
{
CHECK_ARG(buffer);
if (!onewire_reset(pin))
return ESP_ERR_INVALID_RESPONSE;
if (addr == DS18X20_ANY)
onewire_skip_rom(pin);
else
onewire_select(pin, addr);
onewire_write(pin, ds18x20_WRITE_SCRATCHPAD);
for (int i = 0; i < 3; i++)
onewire_write(pin, buffer[i]);
return ESP_OK;
}
esp_err_t ds18x20_copy_scratchpad(gpio_num_t pin, ds18x20_addr_t addr)
{
if (!onewire_reset(pin))
return ESP_ERR_INVALID_RESPONSE;
if (addr == DS18X20_ANY)
onewire_skip_rom(pin);
else
onewire_select(pin, addr);
portENTER_CRITICAL(&mux);
onewire_write(pin, ds18x20_COPY_SCRATCHPAD);
// For parasitic devices, power must be applied within 10us after issuing
// the convert command.
onewire_power(pin);
portEXIT_CRITICAL(&mux);
// And then it needs to keep that power up for 10ms.
vTaskDelay(pdMS_TO_TICKS(10));
onewire_depower(pin);
return ESP_OK;
}
esp_err_t ds18b20_read_temperature(gpio_num_t pin, ds18x20_addr_t addr, int16_t* temperature)
{
CHECK_ARG(temperature);
uint8_t scratchpad[8];
int16_t temp;
CHECK(ds18x20_read_scratchpad(pin, addr, scratchpad));
temp = scratchpad[1] << 8 | scratchpad[0];
*temperature = ((int16_t)temp * 625.0) / 100;
return ESP_OK;
}
esp_err_t ds18s20_read_temperature(gpio_num_t pin, ds18x20_addr_t addr, int16_t* temperature)
{
CHECK_ARG(temperature);
uint8_t scratchpad[8];
int16_t temp;
CHECK(ds18x20_read_scratchpad(pin, addr, scratchpad));
temp = scratchpad[1] << 8 | scratchpad[0];
temp = ((temp & 0xfffe) << 3) + (16 - scratchpad[6]) - 4;
*temperature = (temp * 625) / 100 - 25;
return ESP_OK;
}
esp_err_t ds18x20_read_temperature(gpio_num_t pin, ds18x20_addr_t addr, int16_t* temperature)
{
if ((uint8_t)addr == DS18B20_FAMILY_ID) {
return ds18b20_read_temperature(pin, addr, temperature);
} else {
return ds18s20_read_temperature(pin, addr, temperature);
}
}
esp_err_t ds18b20_measure_and_read(gpio_num_t pin, ds18x20_addr_t addr, int16_t* temperature)
{
CHECK_ARG(temperature);
CHECK(ds18x20_measure(pin, addr, true));
return ds18b20_read_temperature(pin, addr, temperature);
}
esp_err_t ds18s20_measure_and_read(gpio_num_t pin, ds18x20_addr_t addr, int16_t* temperature)
{
CHECK_ARG(temperature);
CHECK(ds18x20_measure(pin, addr, true));
return ds18s20_read_temperature(pin, addr, temperature);
}
esp_err_t ds18x20_measure_and_read(gpio_num_t pin, ds18x20_addr_t addr, int16_t* temperature)
{
CHECK_ARG(temperature);
CHECK(ds18x20_measure(pin, addr, true));
return ds18x20_read_temperature(pin, addr, temperature);
}
esp_err_t ds18x20_measure_and_read_multi(gpio_num_t pin, ds18x20_addr_t* addr_list, size_t addr_count, int16_t* result_list)
{
CHECK_ARG(result_list && addr_count);
CHECK(ds18x20_measure(pin, DS18X20_ANY, true));
return ds18x20_read_temp_multi(pin, addr_list, addr_count, result_list);
}
esp_err_t ds18x20_scan_devices(gpio_num_t pin, ds18x20_addr_t* addr_list, size_t addr_count, size_t* found)
{
CHECK_ARG(addr_list && addr_count);
onewire_search_t search;
onewire_addr_t addr;
*found = 0;
onewire_search_start(&search);
while ((addr = onewire_search_next(&search, pin)) != ONEWIRE_NONE)
{
uint8_t family_id = (uint8_t)addr;
if (family_id == DS18B20_FAMILY_ID || family_id == DS18S20_FAMILY_ID)
{
if (*found < addr_count)
addr_list[*found] = addr;
*found += 1;
}
}
return ESP_OK;
}
esp_err_t ds18x20_read_temp_multi(gpio_num_t pin, ds18x20_addr_t* addr_list, size_t addr_count, int16_t* result_list)
{
CHECK_ARG(result_list);
esp_err_t res = ESP_OK;
for (size_t i = 0; i < addr_count; i++)
{
esp_err_t tmp = ds18x20_read_temperature(pin, addr_list[i], &result_list[i]);
if (tmp != ESP_OK)
res = tmp;
}
return res;
}

View File

@@ -1,498 +0,0 @@
/*
* The MIT License (MIT)
*
* Copyright (c) 2014 zeroday nodemcu.com
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
* -------------------------------------------------------------------------------
* Portions copyright (C) 2000 Dallas Semiconductor Corporation, under the
* following additional terms:
*
* Except as contained in this notice, the name of Dallas Semiconductor
* shall not be used except as stated in the Dallas Semiconductor
* Branding Policy.
*/
#include <string.h>
#include <freertos/FreeRTOS.h>
#include <freertos/task.h>
#include "rom/ets_sys.h"
#include "onewire.h"
#define ONEWIRE_SELECT_ROM 0x55
#define ONEWIRE_SKIP_ROM 0xcc
#define ONEWIRE_SEARCH 0xf0
#define ONEWIRE_CRC8_TABLE
static portMUX_TYPE mux = portMUX_INITIALIZER_UNLOCKED;
// Waits up to `max_wait` microseconds for the specified pin to go high.
// Returns true if successful, false if the bus never comes high (likely
// shorted).
static inline bool _onewire_wait_for_bus(gpio_num_t pin, int max_wait)
{
bool state;
for (int i = 0; i < ((max_wait + 4) / 5); i++) {
if (gpio_get_level(pin))
break;
ets_delay_us(5);
}
state = gpio_get_level(pin);
// Wait an extra 1us to make sure the devices have an adequate recovery
// time before we drive things low again.
ets_delay_us(1);
return state;
}
static void setup_pin(gpio_num_t pin, bool open_drain)
{
gpio_set_direction(pin, open_drain ? GPIO_MODE_INPUT_OUTPUT_OD : GPIO_MODE_OUTPUT);
// gpio_set_pull_mode(pin, GPIO_PULLUP_ONLY);
}
// Perform the onewire reset function. We will wait up to 250uS for
// the bus to come high, if it doesn't then it is broken or shorted
// and we return false;
//
// Returns true if a device asserted a presence pulse, false otherwise.
//
bool onewire_reset(gpio_num_t pin)
{
setup_pin(pin, true);
gpio_set_level(pin, 1);
// wait until the wire is high... just in case
if (!_onewire_wait_for_bus(pin, 250))
return false;
gpio_set_level(pin, 0);
ets_delay_us(480);
portENTER_CRITICAL(&mux);
gpio_set_level(pin, 1); // allow it to float
ets_delay_us(70);
bool r = !gpio_get_level(pin);
portEXIT_CRITICAL(&mux);
// Wait for all devices to finish pulling the bus low before returning
if (!_onewire_wait_for_bus(pin, 410))
return false;
return r;
}
static bool _onewire_write_bit(gpio_num_t pin, bool v)
{
if (!_onewire_wait_for_bus(pin, 10))
return false;
portENTER_CRITICAL(&mux);
if (v) {
gpio_set_level(pin, 0); // drive output low
ets_delay_us(10);
gpio_set_level(pin, 1); // allow output high
ets_delay_us(55);
} else {
gpio_set_level(pin, 0); // drive output low
ets_delay_us(65);
gpio_set_level(pin, 1); // allow output high
}
ets_delay_us(1);
portEXIT_CRITICAL(&mux);
return true;
}
static int _onewire_read_bit(gpio_num_t pin)
{
if (!_onewire_wait_for_bus(pin, 10))
return -1;
portENTER_CRITICAL(&mux);
gpio_set_level(pin, 0);
ets_delay_us(2);
gpio_set_level(pin, 1); // let pin float, pull up will raise
ets_delay_us(11);
int r = gpio_get_level(pin); // Must sample within 15us of start
ets_delay_us(48);
portEXIT_CRITICAL(&mux);
return r;
}
// Write a byte. The writing code uses open-drain mode and expects the pullup
// resistor to pull the line high when not driven low. If you need strong
// power after the write (e.g. DS18B20 in parasite power mode) then call
// onewire_power() after this is complete to actively drive the line high.
//
bool onewire_write(gpio_num_t pin, uint8_t v)
{
for (uint8_t bitMask = 0x01; bitMask; bitMask <<= 1)
if (!_onewire_write_bit(pin, (bitMask & v)))
return false;
return true;
}
bool onewire_write_bytes(gpio_num_t pin, const uint8_t* buf, size_t count)
{
for (size_t i = 0; i < count; i++)
if (!onewire_write(pin, buf[i]))
return false;
return true;
}
// Read a byte
//
int onewire_read(gpio_num_t pin)
{
int r = 0;
for (uint8_t bitMask = 0x01; bitMask; bitMask <<= 1) {
int bit = _onewire_read_bit(pin);
if (bit < 0)
return -1;
else if (bit)
r |= bitMask;
}
return r;
}
bool onewire_read_bytes(gpio_num_t pin, uint8_t* buf, size_t count)
{
size_t i;
int b;
for (i = 0; i < count; i++) {
b = onewire_read(pin);
if (b < 0)
return false;
buf[i] = b;
}
return true;
}
bool onewire_select(gpio_num_t pin, onewire_addr_t addr)
{
uint8_t i;
if (!onewire_write(pin, ONEWIRE_SELECT_ROM))
return false;
for (i = 0; i < 8; i++) {
if (!onewire_write(pin, addr & 0xff))
return false;
addr >>= 8;
}
return true;
}
bool onewire_skip_rom(gpio_num_t pin)
{
return onewire_write(pin, ONEWIRE_SKIP_ROM);
}
bool onewire_power(gpio_num_t pin)
{
// Make sure the bus is not being held low before driving it high, or we
// may end up shorting ourselves out.
if (!_onewire_wait_for_bus(pin, 10))
return false;
setup_pin(pin, false);
gpio_set_level(pin, 1);
return true;
}
void onewire_depower(gpio_num_t pin)
{
setup_pin(pin, true);
}
void onewire_search_start(onewire_search_t* search)
{
// reset the search state
memset(search, 0, sizeof(*search));
}
void onewire_search_prefix(onewire_search_t* search, uint8_t family_code)
{
uint8_t i;
search->rom_no[0] = family_code;
for (i = 1; i < 8; i++) {
search->rom_no[i] = 0;
}
search->last_discrepancy = 64;
search->last_device_found = false;
}
// Perform a search. If the next device has been successfully enumerated, its
// ROM address will be returned. If there are no devices, no further
// devices, or something horrible happens in the middle of the
// enumeration then ONEWIRE_NONE is returned. Use OneWire::reset_search() to
// start over.
//
// --- Replaced by the one from the Dallas Semiconductor web site ---
//--------------------------------------------------------------------------
// Perform the 1-Wire Search Algorithm on the 1-Wire bus using the existing
// search state.
// Return 1 : device found, ROM number in ROM_NO buffer
// 0 : device not found, end of search
//
onewire_addr_t onewire_search_next(onewire_search_t* search, gpio_num_t pin)
{
//TODO: add more checking for read/write errors
uint8_t id_bit_number;
uint8_t last_zero, search_result;
int rom_byte_number;
int8_t id_bit, cmp_id_bit;
onewire_addr_t addr;
unsigned char rom_byte_mask;
bool search_direction;
// initialize for search
id_bit_number = 1;
last_zero = 0;
rom_byte_number = 0;
rom_byte_mask = 1;
search_result = 0;
// if the last call was not the last one
if (!search->last_device_found) {
// 1-Wire reset
if (!onewire_reset(pin)) {
// reset the search
search->last_discrepancy = 0;
search->last_device_found = false;
return ONEWIRE_NONE;
}
// issue the search command
onewire_write(pin, ONEWIRE_SEARCH);
// loop to do the search
do {
// read a bit and its complement
id_bit = _onewire_read_bit(pin);
cmp_id_bit = _onewire_read_bit(pin);
if ((id_bit == 1) && (cmp_id_bit == 1))
break;
else {
// all devices coupled have 0 or 1
if (id_bit != cmp_id_bit)
search_direction = id_bit; // bit write value for search
else {
// if this discrepancy if before the Last Discrepancy
// on a previous next then pick the same as last time
if (id_bit_number < search->last_discrepancy)
search_direction = ((search->rom_no[rom_byte_number] & rom_byte_mask) > 0);
else
// if equal to last pick 1, if not then pick 0
search_direction = (id_bit_number == search->last_discrepancy);
// if 0 was picked then record its position in LastZero
if (!search_direction)
last_zero = id_bit_number;
}
// set or clear the bit in the ROM byte rom_byte_number
// with mask rom_byte_mask
if (search_direction)
search->rom_no[rom_byte_number] |= rom_byte_mask;
else
search->rom_no[rom_byte_number] &= ~rom_byte_mask;
// serial number search direction write bit
_onewire_write_bit(pin, search_direction);
// increment the byte counter id_bit_number
// and shift the mask rom_byte_mask
id_bit_number++;
rom_byte_mask <<= 1;
// if the mask is 0 then go to new SerialNum byte rom_byte_number and reset mask
if (rom_byte_mask == 0) {
rom_byte_number++;
rom_byte_mask = 1;
}
}
} while (rom_byte_number < 8); // loop until through all ROM bytes 0-7
// if the search was successful then
if (!(id_bit_number < 65)) {
// search successful so set last_discrepancy,last_device_found,search_result
search->last_discrepancy = last_zero;
// check for last device
if (search->last_discrepancy == 0)
search->last_device_found = true;
search_result = 1;
}
}
// if no device found then reset counters so next 'search' will be like a first
if (!search_result || !search->rom_no[0]) {
search->last_discrepancy = 0;
search->last_device_found = false;
return ONEWIRE_NONE;
} else {
addr = 0;
for (rom_byte_number = 7; rom_byte_number >= 0; rom_byte_number--) {
addr = (addr << 8) | search->rom_no[rom_byte_number];
}
//printf("Ok I found something at %08x%08x...\n", (uint32_t)(addr >> 32), (uint32_t)addr);
}
return addr;
}
// The 1-Wire CRC scheme is described in Maxim Application Note 27:
// "Understanding and Using Cyclic Redundancy Checks with Maxim iButton Products"
//
#ifdef ONEWIRE_CRC8_TABLE
// This table comes from Dallas sample code where it is freely reusable,
// though Copyright (c) 2000 Dallas Semiconductor Corporation
static const uint8_t dscrc_table[] = {
0, 94, 188, 226, 97, 63, 221, 131, 194, 156, 126, 32, 163, 253, 31, 65,
157, 195, 33, 127, 252, 162, 64, 30, 95, 1, 227, 189, 62, 96, 130, 220,
35, 125, 159, 193, 66, 28, 254, 160, 225, 191, 93, 3, 128, 222, 60, 98,
190, 224, 2, 92, 223, 129, 99, 61, 124, 34, 192, 158, 29, 67, 161, 255,
70, 24, 250, 164, 39, 121, 155, 197, 132, 218, 56, 102, 229, 187, 89, 7,
219, 133, 103, 57, 186, 228, 6, 88, 25, 71, 165, 251, 120, 38, 196, 154,
101, 59, 217, 135, 4, 90, 184, 230, 167, 249, 27, 69, 198, 152, 122, 36,
248, 166, 68, 26, 153, 199, 37, 123, 58, 100, 134, 216, 91, 5, 231, 185,
140, 210, 48, 110, 237, 179, 81, 15, 78, 16, 242, 172, 47, 113, 147, 205,
17, 79, 173, 243, 112, 46, 204, 146, 211, 141, 111, 49, 178, 236, 14, 80,
175, 241, 19, 77, 206, 144, 114, 44, 109, 51, 209, 143, 12, 82, 176, 238,
50, 108, 142, 208, 83, 13, 239, 177, 240, 174, 76, 18, 145, 207, 45, 115,
202, 148, 118, 40, 171, 245, 23, 73, 8, 86, 180, 234, 105, 55, 213, 139,
87, 9, 235, 181, 54, 104, 138, 212, 149, 203, 41, 119, 244, 170, 72, 22,
233, 183, 85, 11, 136, 214, 52, 106, 43, 117, 151, 201, 74, 20, 246, 168,
116, 42, 200, 150, 21, 75, 169, 247, 182, 232, 10, 84, 215, 137, 107, 53
};
//
// Compute a Dallas Semiconductor 8 bit CRC. These show up in the ROM
// and the registers. (note: this might better be done without to
// table, it would probably be smaller and certainly fast enough
// compared to all those delayMicrosecond() calls. But I got
// confused, so I use this table from the examples.)
//
uint8_t onewire_crc8(const uint8_t* data, uint8_t len)
{
uint8_t crc = 0;
while (len--)
crc = dscrc_table[crc ^ *data++];
return crc;
}
#else
//
// Compute a Dallas Semiconductor 8 bit CRC directly.
// this is much slower, but much smaller, than the lookup table.
//
uint8_t onewire_crc8(const uint8_t* data, uint8_t len)
{
uint8_t crc = 0;
while (len--)
{
uint8_t inbyte = *data++;
for (int i = 8; i; i--)
{
uint8_t mix = (crc ^ inbyte) & 0x01;
crc >>= 1;
if (mix)
crc ^= 0x8C;
inbyte >>= 1;
}
}
return crc;
}
#endif /* ONEWIRE_CRC8_TABLE */
// Compute the 1-Wire CRC16 and compare it against the received CRC.
// Example usage (reading a DS2408):
// // Put everything in a buffer so we can compute the CRC easily.
// uint8_t buf[13];
// buf[0] = 0xF0; // Read PIO Registers
// buf[1] = 0x88; // LSB address
// buf[2] = 0x00; // MSB address
// WriteBytes(net, buf, 3); // Write 3 cmd bytes
// ReadBytes(net, buf+3, 10); // Read 6 data bytes, 2 0xFF, 2 CRC16
// if (!CheckCRC16(buf, 11, &buf[11])) {
// // Handle error.
// }
//
// @param input - Array of bytes to checksum.
// @param len - How many bytes to use.
// @param inverted_crc - The two CRC16 bytes in the received data.
// This should just point into the received data,
// *not* at a 16-bit integer.
// @param crc - The crc starting value (optional)
// @return 1, iff the CRC matches.
bool onewire_check_crc16(const uint8_t* input, size_t len, const uint8_t* inverted_crc, uint16_t crc_iv)
{
uint16_t crc = ~onewire_crc16(input, len, crc_iv);
return (crc & 0xFF) == inverted_crc[0] && (crc >> 8) == inverted_crc[1];
}
// Compute a Dallas Semiconductor 16 bit CRC. This is required to check
// the integrity of data received from many 1-Wire devices. Note that the
// CRC computed here is *not* what you'll get from the 1-Wire network,
// for two reasons:
// 1) The CRC is transmitted bitwise inverted.
// 2) Depending on the endian-ness of your processor, the binary
// representation of the two-byte return value may have a different
// byte order than the two bytes you get from 1-Wire.
// @param input - Array of bytes to checksum.
// @param len - How many bytes to use.
// @param crc - The crc starting value (optional)
// @return The CRC16, as defined by Dallas Semiconductor.
uint16_t onewire_crc16(const uint8_t* input, size_t len, uint16_t crc_iv)
{
uint16_t crc = crc_iv;
static const uint8_t oddparity[16] = { 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0 };
uint16_t i;
for (i = 0; i < len; i++) {
// Even though we're just copying a byte from the input,
// we'll be doing 16-bit computation with it.
uint16_t cdata = input[i];
cdata = (cdata ^ crc) & 0xff;
crc >>= 8;
if (oddparity[cdata & 0x0F] ^ oddparity[cdata >> 4])
crc ^= 0xC001;
cdata <<= 6;
crc ^= cdata;
cdata <<= 1;
crc ^= cdata;
}
return crc;
}

View File

@@ -1,7 +1,5 @@
#include "peripherals.h"
#include "adc.h"
//#include "led.h"
// #include "buzzer.h"
#include "proximity.h"
#include "ac_relay.h"
#include "socket_lock.h"
@@ -11,13 +9,9 @@
void peripherals_init(void)
{
ac_relay_init();
// led_init();
// buzzer_init();
adc_init();
proximity_init();
// socket_lock_init();
// rcm_init();
// energy_meter_init();
// aux_init();
ntc_sensor_init();
}

View File

@@ -4,12 +4,15 @@
#include "freertos/semphr.h"
#include "freertos/timers.h"
#include "esp_log.h"
#include "esp_err.h"
#include "driver/gpio.h"
#include "nvs.h"
#include "socket_lock.h"
#include "board_config.h"
// NEW:
#include "storage_service.h"
#define NVS_NAMESPACE "socket_lock"
#define NVS_OPERATING_TIME "op_time"
#define NVS_BREAK_TIME "break_time"
@@ -27,20 +30,68 @@
static const char* TAG = "socket_lock";
static nvs_handle_t nvs;
// Storage timeouts (ajusta se quiseres)
#define STORE_TO pdMS_TO_TICKS(800)
#define STORE_FLUSH_TO pdMS_TO_TICKS(2000)
static uint16_t operating_time = 300;
static uint16_t break_time = 1000;
static bool detection_high;
static bool detection_high = false;
static uint8_t retry_count = 5;
static socket_lock_status_t status;
static TaskHandle_t socket_lock_task;
// -----------------------------------------------------------------------------
// Helpers storage (best effort) - iguais ao estilo do wifi.c
// -----------------------------------------------------------------------------
static esp_err_t store_flush_best_effort(void)
{
esp_err_t e = storage_flush_sync(STORE_FLUSH_TO);
if (e != ESP_OK)
ESP_LOGW(TAG, "storage_flush_sync failed: %s", esp_err_to_name(e));
return e;
}
static esp_err_t store_set_u8_best_effort(const char *ns, const char *key, uint8_t v)
{
for (int attempt = 0; attempt < 3; ++attempt)
{
esp_err_t e = storage_set_u8_async(ns, key, v);
if (e == ESP_OK) return ESP_OK;
if (e == ESP_ERR_TIMEOUT)
{
(void)store_flush_best_effort();
vTaskDelay(pdMS_TO_TICKS(10));
continue;
}
return e;
}
return ESP_ERR_TIMEOUT;
}
static esp_err_t store_set_u16_best_effort(const char *ns, const char *key, uint16_t v)
{
for (int attempt = 0; attempt < 3; ++attempt)
{
esp_err_t e = storage_set_u16_async(ns, key, v);
if (e == ESP_OK) return ESP_OK;
if (e == ESP_ERR_TIMEOUT)
{
(void)store_flush_best_effort();
vTaskDelay(pdMS_TO_TICKS(10));
continue;
}
return e;
}
return ESP_ERR_TIMEOUT;
}
// -----------------------------------------------------------------------------
// Lock logic
// -----------------------------------------------------------------------------
static bool is_locked(void)
{
gpio_set_level(board_config.socket_lock_a_gpio, 1);
@@ -58,31 +109,42 @@ bool socket_lock_is_locked_state(void)
static void socket_lock_task_func(void* param)
{
uint32_t notification;
(void)param;
uint32_t notification;
TickType_t previous_tick = 0;
uint8_t attempt = 0;
while (true) {
if (xTaskNotifyWait(0x00, 0xff, &notification, portMAX_DELAY)) {
if (notification & (LOCK_BIT | UNLOCK_BIT)) {
while (true)
{
if (xTaskNotifyWait(0x00, 0xff, &notification, portMAX_DELAY))
{
if (notification & (LOCK_BIT | UNLOCK_BIT))
{
attempt = retry_count;
}
if (notification & (UNLOCK_BIT | REPEAT_UNLOCK_BIT)) {
if (notification & (UNLOCK_BIT | REPEAT_UNLOCK_BIT))
{
gpio_set_level(board_config.socket_lock_a_gpio, 0);
gpio_set_level(board_config.socket_lock_b_gpio, 1);
vTaskDelay(pdMS_TO_TICKS(operating_time));
if (!is_locked()) {
if (!is_locked())
{
ESP_LOGI(TAG, "Unlock OK");
status = SOCKED_LOCK_STATUS_IDLE;
} else {
if (attempt > 1) {
}
else
{
if (attempt > 1)
{
ESP_LOGW(TAG, "Not unlocked yet, repeating...");
attempt--;
xTaskNotify(socket_lock_task, REPEAT_UNLOCK_BIT, eSetBits);
} else {
}
else
{
ESP_LOGE(TAG, "Not unlocked");
status = SOCKED_LOCK_STATUS_UNLOCKING_FAIL;
}
@@ -90,23 +152,33 @@ static void socket_lock_task_func(void* param)
gpio_set_level(board_config.socket_lock_a_gpio, 0);
gpio_set_level(board_config.socket_lock_b_gpio, 0);
} else if (notification & (LOCK_BIT | REPEAT_LOCK_BIT)) {
if (notification & LOCK_BIT) {
vTaskDelay(pdMS_TO_TICKS(LOCK_DELAY)); //delay before first lock attempt
}
else if (notification & (LOCK_BIT | REPEAT_LOCK_BIT))
{
if (notification & LOCK_BIT)
{
vTaskDelay(pdMS_TO_TICKS(LOCK_DELAY)); // delay before first lock attempt
}
gpio_set_level(board_config.socket_lock_a_gpio, 1);
gpio_set_level(board_config.socket_lock_b_gpio, 0);
vTaskDelay(pdMS_TO_TICKS(operating_time));
if (is_locked()) {
if (is_locked())
{
ESP_LOGI(TAG, "Lock OK");
status = SOCKED_LOCK_STATUS_IDLE;
} else {
if (attempt > 1) {
}
else
{
if (attempt > 1)
{
ESP_LOGW(TAG, "Not locked yet, repeating...");
attempt--;
xTaskNotify(socket_lock_task, REPEAT_LOCK_BIT, eSetBits);
} else {
}
else
{
ESP_LOGE(TAG, "Not locked");
status = SOCKED_LOCK_STATUS_LOCKING_FAIL;
}
@@ -117,7 +189,8 @@ static void socket_lock_task_func(void* param)
}
TickType_t delay_tick = xTaskGetTickCount() - previous_tick;
if (delay_tick < pdMS_TO_TICKS(break_time)) {
if (delay_tick < pdMS_TO_TICKS(break_time))
{
vTaskDelay(pdMS_TO_TICKS(break_time) - delay_tick);
}
previous_tick = xTaskGetTickCount();
@@ -125,34 +198,56 @@ static void socket_lock_task_func(void* param)
}
}
// -----------------------------------------------------------------------------
// Init / API pública
// -----------------------------------------------------------------------------
void socket_lock_init(void)
{
if (board_config.socket_lock) {
ESP_ERROR_CHECK(nvs_open(NVS_NAMESPACE, NVS_READWRITE, &nvs));
if (!board_config.socket_lock)
return;
nvs_get_u16(nvs, NVS_OPERATING_TIME, &operating_time);
// garante storage pronto
esp_err_t se = storage_service_init();
if (se != ESP_OK)
ESP_LOGW(TAG, "storage_service_init failed: %s", esp_err_to_name(se));
nvs_get_u16(nvs, NVS_BREAK_TIME, &break_time);
// Load config (best effort; se não existir, fica default)
{
uint16_t u16 = 0;
uint8_t u8 = 0;
nvs_get_u8(nvs, NVS_RETRY_COUNT, &retry_count);
esp_err_t e = storage_get_u16_sync(NVS_NAMESPACE, NVS_OPERATING_TIME, &u16, STORE_TO);
if (e == ESP_OK) operating_time = u16;
else if (e != ESP_ERR_NOT_FOUND)
ESP_LOGW(TAG, "load %s failed: %s", NVS_OPERATING_TIME, esp_err_to_name(e));
uint8_t u8;
if (nvs_get_u8(nvs, NVS_DETECTION_HIGH, &u8) == ESP_OK) {
detection_high = u8;
}
e = storage_get_u16_sync(NVS_NAMESPACE, NVS_BREAK_TIME, &u16, STORE_TO);
if (e == ESP_OK) break_time = u16;
else if (e != ESP_ERR_NOT_FOUND)
ESP_LOGW(TAG, "load %s failed: %s", NVS_BREAK_TIME, esp_err_to_name(e));
gpio_config_t io_conf = {};
e = storage_get_u8_sync(NVS_NAMESPACE, NVS_RETRY_COUNT, &u8, STORE_TO);
if (e == ESP_OK) retry_count = u8;
else if (e != ESP_ERR_NOT_FOUND)
ESP_LOGW(TAG, "load %s failed: %s", NVS_RETRY_COUNT, esp_err_to_name(e));
io_conf.mode = GPIO_MODE_OUTPUT;
io_conf.pin_bit_mask = BIT64(board_config.socket_lock_a_gpio) | BIT64(board_config.socket_lock_b_gpio);
ESP_ERROR_CHECK(gpio_config(&io_conf));
io_conf.mode = GPIO_MODE_INPUT;
io_conf.pin_bit_mask = BIT64(board_config.socket_lock_detection_gpio);
ESP_ERROR_CHECK(gpio_config(&io_conf));
xTaskCreate(socket_lock_task_func, "socket_lock_task", 2 * 1024, NULL, 10, &socket_lock_task);
e = storage_get_u8_sync(NVS_NAMESPACE, NVS_DETECTION_HIGH, &u8, STORE_TO);
if (e == ESP_OK) detection_high = (u8 != 0);
else if (e != ESP_ERR_NOT_FOUND)
ESP_LOGW(TAG, "load %s failed: %s", NVS_DETECTION_HIGH, esp_err_to_name(e));
}
gpio_config_t io_conf = {};
io_conf.mode = GPIO_MODE_OUTPUT;
io_conf.pin_bit_mask = BIT64(board_config.socket_lock_a_gpio) | BIT64(board_config.socket_lock_b_gpio);
ESP_ERROR_CHECK(gpio_config(&io_conf));
io_conf.mode = GPIO_MODE_INPUT;
io_conf.pin_bit_mask = BIT64(board_config.socket_lock_detection_gpio);
ESP_ERROR_CHECK(gpio_config(&io_conf));
xTaskCreate(socket_lock_task_func, "socket_lock_task", 2 * 1024, NULL, 2, &socket_lock_task);
}
bool socket_lock_is_detection_high(void)
@@ -164,8 +259,11 @@ void socket_lock_set_detection_high(bool _detection_high)
{
detection_high = _detection_high;
nvs_set_u8(nvs, NVS_DETECTION_HIGH, detection_high);
nvs_commit(nvs);
esp_err_t e = store_set_u8_best_effort(NVS_NAMESPACE, NVS_DETECTION_HIGH, detection_high ? 1 : 0);
if (e != ESP_OK)
ESP_LOGW(TAG, "persist detect_hi failed: %s", esp_err_to_name(e));
(void)store_flush_best_effort();
}
uint16_t socket_lock_get_operating_time(void)
@@ -175,15 +273,22 @@ uint16_t socket_lock_get_operating_time(void)
esp_err_t socket_lock_set_operating_time(uint16_t _operating_time)
{
if (_operating_time < OPERATING_TIME_MIN || _operating_time > OPERATING_TIME_MAX) {
if (_operating_time < OPERATING_TIME_MIN || _operating_time > OPERATING_TIME_MAX)
{
ESP_LOGE(TAG, "Operating time out of range");
return ESP_ERR_INVALID_ARG;
}
operating_time = _operating_time;
nvs_set_u16(nvs, NVS_OPERATING_TIME, operating_time);
nvs_commit(nvs);
esp_err_t e = store_set_u16_best_effort(NVS_NAMESPACE, NVS_OPERATING_TIME, operating_time);
if (e != ESP_OK)
{
ESP_LOGW(TAG, "persist op_time failed: %s", esp_err_to_name(e));
return e;
}
(void)store_flush_best_effort();
return ESP_OK;
}
@@ -195,8 +300,12 @@ uint8_t socket_lock_get_retry_count(void)
void socket_lock_set_retry_count(uint8_t _retry_count)
{
retry_count = _retry_count;
nvs_set_u8(nvs, NVS_RETRY_COUNT, retry_count);
nvs_commit(nvs);
esp_err_t e = store_set_u8_best_effort(NVS_NAMESPACE, NVS_RETRY_COUNT, retry_count);
if (e != ESP_OK)
ESP_LOGW(TAG, "persist retry_count failed: %s", esp_err_to_name(e));
(void)store_flush_best_effort();
}
uint16_t socket_lock_get_break_time(void)
@@ -206,15 +315,22 @@ uint16_t socket_lock_get_break_time(void)
esp_err_t socket_lock_set_break_time(uint16_t _break_time)
{
if (_break_time < board_config.socket_lock_min_break_time) {
ESP_LOGE(TAG, "Operating time out of range");
if (_break_time < board_config.socket_lock_min_break_time)
{
ESP_LOGE(TAG, "Break time out of range");
return ESP_ERR_INVALID_ARG;
}
break_time = _break_time;
nvs_set_u16(nvs, NVS_BREAK_TIME, break_time);
nvs_commit(nvs);
esp_err_t e = store_set_u16_best_effort(NVS_NAMESPACE, NVS_BREAK_TIME, break_time);
if (e != ESP_OK)
{
ESP_LOGW(TAG, "persist break_time failed: %s", esp_err_to_name(e));
return e;
}
(void)store_flush_best_effort();
return ESP_OK;
}
@@ -229,4 +345,4 @@ void socket_lock_set_locked(bool locked)
socket_lock_status_t socket_lock_get_status(void)
{
return status;
}
}

View File

@@ -38,7 +38,7 @@ void temp_sensor_init(void)
lm75a_init();
xTaskCreate(temp_sensor_task_func, "temp_sensor_task", 5 * 1024, NULL, 5, NULL);
xTaskCreate(temp_sensor_task_func, "temp_sensor_task", 5 * 1024, NULL, 2, NULL);
}
uint8_t temp_sensor_get_count(void)